A216244 a(n) = (prime(n)^2 - 1)/2 for n >= 2.
4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380, 18240, 18624, 19404, 19800
Offset: 2
Examples
24^2 + 7^2 = 625 = 25^2 = (24 +1)^2 and a(4) = (prime(4)^2 -1)/2 = (49 - 1)/2 = 24.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..4000
Programs
-
Magma
[(NthPrime(n)^2 - 1)/2: n in [2..50]]; // G. C. Greubel, Dec 14 2018
-
Maple
A216244:=n->(ithprime(n)^2-1)/2: seq(A216244(n), n=2..100); # Wesley Ivan Hurt, May 03 2017
-
Mathematica
Table[(Prime[n]^2 - 1)/2, {n, 2, 100}] (* Vincenzo Librandi, Jun 15 2014 *)
-
PARI
vector(50, n, n++; (prime(n)^2 -1)/2) \\ G. C. Greubel, Dec 14 2018
-
Sage
[(nth_prime(n)^2 -1)/2 for n in (2..50)] # G. C. Greubel, Dec 14 2018
Formula
a(n) = (prime(n)^2 - 1)/2 for n >= 2.
a(n) = A084921(n) for n > 1.
a(n) = (prime(n)-1)*(prime(n)+1)/2 = lcm(prime(n)+1, prime(n)-1) for n > 1 because one of prime(n)+1 or prime(n)-1 is even and the other is divisible by 4. Say prime(n)-1 is divisible by 4; then (prime(n)+1)/2 and (prime(n)-1)/4 must be coprime. - Frank M Jackson, Dec 11 2018
Product_{n>=2} (1 + 1/a(n)) = 3/2. - Amiram Eldar, Jun 03 2022
Extensions
New name (taken from Formula entry) from Jon E. Schoenfield, Jul 11 2021
Comments