A216299 Numbers k such that 10k+1 is composite but 10k+3, 10k+7, 10k+9 are all prime.
22, 61, 85, 142, 166, 169, 178, 199, 268, 316, 415, 451, 478, 541, 682, 775, 787, 862, 1045, 1111, 1237, 1387, 1618, 1720, 1738, 2014, 2035, 2074, 2131, 2215, 2305, 2362, 2410, 2710, 2773, 2938, 3013, 3055, 3271, 3334, 3361, 3412, 3652, 4012, 4042, 4069
Offset: 1
Keywords
Links
- V. Raman, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..4100]| not IsPrime(10*k+1) and forall{m:m in [3,7,9]| IsPrime(10*k+m)}]; // Marius A. Burtea, Feb 02 2020
-
Mathematica
t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[ps == {10*n + 3, 10*n + 7, 10*n + 9}, AppendTo[t, n]], {n, 0, 4978}]; t (* T. D. Noe, Sep 03 2012 *) Select[Range[4100],CompositeQ[10#+1]&&AllTrue[10#+{3,7,9},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 14 2019 *)
Formula
a(n) >> n log^3 n. - Charles R Greathouse IV, Sep 07 2012