cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215444 Numbers k such that 7^k + k^7 + 1 is prime.

Original entry on oeis.org

0, 3, 5, 15, 375, 98003
Offset: 1

Views

Author

Vincenzo Librandi, Sep 06 2012

Keywords

Comments

a(6) > 8000. - Joerg Arndt, Sep 29 2012
a(7) > 2*10^5. - Robert Price, Jun 15 2014

Crossrefs

Programs

  • Magma
    [k: k in [0..400] | IsPrime(7^k + k^7 + 1)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[7^# + #^7 + 1] &]
  • PARI
    is(n)=ispseudoprime(7^n+n^7+1) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(6) from Robert Price, May 24 2014

A243934 Numbers k such that 6^k + k^6 + 1 is prime.

Original entry on oeis.org

0, 2, 4, 14, 22, 26, 36, 216, 354, 874, 1018, 2798, 6116, 6574, 6922, 8090, 8398, 12866, 20816, 54810
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 15 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], PrimeQ[6^# + #^6 + 1] &]
  • PARI
    is(n)=ispseudoprime(6^n+n^6+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(19) from Vaclav Kotesovec, Jun 16 2014
a(20) from Michael S. Branicky, Oct 12 2024

A216592 Numbers m such that 8^m + m^8 + 1 is prime.

Original entry on oeis.org

0, 108, 27018
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2012

Keywords

Comments

Next term > 2*10^4.
a(4) > 10^5. - Robert Price, Oct 08 2015

Examples

			8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
		

Crossrefs

Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13).
Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19).
Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5).
Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5).

Programs

  • Mathematica
    Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
  • PARI
    is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(3) from Robert Price, Oct 08 2015
Showing 1-3 of 3 results.