A215444
Numbers k such that 7^k + k^7 + 1 is prime.
Original entry on oeis.org
0, 3, 5, 15, 375, 98003
Offset: 1
-
[k: k in [0..400] | IsPrime(7^k + k^7 + 1)];
-
Select[Range[0, 5000], PrimeQ[7^# + #^7 + 1] &]
-
is(n)=ispseudoprime(7^n+n^7+1) \\ Charles R Greathouse IV, Jun 06 2017
A243934
Numbers k such that 6^k + k^6 + 1 is prime.
Original entry on oeis.org
0, 2, 4, 14, 22, 26, 36, 216, 354, 874, 1018, 2798, 6116, 6574, 6922, 8090, 8398, 12866, 20816, 54810
Offset: 1
-
Select[Range[0, 1000], PrimeQ[6^# + #^6 + 1] &]
-
is(n)=ispseudoprime(6^n+n^6+1) \\ Charles R Greathouse IV, Jun 13 2017
A216592
Numbers m such that 8^m + m^8 + 1 is prime.
Original entry on oeis.org
8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
Cf. Numbers m such that k^m + m^k - 1 is prime:
A215439 (k=2),
A215440 (k=3),
A216424 (k=4),
A215443 (k=5),
A216425 (k=6),
A215445 (k=7),
A216591 (k=8),
A216619 (k=10),
A215446 (k=11),
A216420 (k=13),
A216422 (k=19).
-
Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
-
is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-3 of 3 results.
Comments