cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216486 a(n) is equal to the rational part (considering of the field Q(sqrt(13))) of the numbers A(n)/sqrt(13), where we have A(n) = ((sqrt(13) - 1)/2)*A(n-1) + A(n-2) + ((3-sqrt(13))/2)*A(n-3), with A(0) = 6, A(1) = sqrt(13) - 1, and A(2) = 11 - sqrt(13).

Original entry on oeis.org

0, 1, -1, 4, -3, 14, -10, 48, -37, 166, -144, 582, -570, 2067, -2260, 7421, -8923, 26878, -35020, 98039, -136612, 359649, -529990, 1325491, -2046310, 4903786, -7868991, 18199354, -30157768, 67720279, -115255425, 252540383, -439456837, 943488036
Offset: 0

Views

Author

Roman Witula, Sep 11 2012

Keywords

Comments

The Berndt-type sequence number 2 for the argument 2*Pi/13 defined by the following relation: A216605(n) + a(n)*sqrt(13) = A(n) = 2*(c(1)^n + c(3)^n + c(4)^n), where c(j) := 2*cos(2*Pi*j/13), j=1..6. The numbers a(n), n=0,1,..., are all positive integers. We note that we also have A216605(n) - a(n)*sqrt(13) = B(n) = 2*(c(2)^n + c(5)^n + c(6)^n) and the following recurrence relation holds: B(n) = -((sqrt(13)+1)/2)*B(n-1) + B(n-2) + ((3+sqrt(13))/2)*B(n-3), with B(0) = 6, B(1) = -sqrt(13) - 1, and B(2) = 11 + sqrt(13).
We note that the sums a(2*n+1) + a(2*n+2) are nonnegative only for n = 0..5.

Examples

			We have a(5) + a(6) + a(4) + a(2) = a(7) + a(8) + a(6) + a(2) = a(9) + a(5) + a(1) + a(10) + a(8) = 0 and
  a(6) + a(9) + a(10) = a(11) + a(12) = 12.
Moreover, the following relations hold: A(3) = 4*A(1), B(3) = 4*B(1), A(5) = 4*A(3) + 2*sqrt(13), B(5) = 4*B(3)-2*sqrt(13), A(7) = 4*A(5) + 8*sqrt(13), B(7) = 4*B(5)-8*sqrt(13), A(4) = 3*A(2) - 2, B(4) = 3*B(2) + 2, 6 + A(6) = 3*A(4) + A(2), and A(8) - 3*A(6) = 25 - A(5)/2.
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Cf. A216605.

Programs

  • Mathematica
    LinearRecurrence[{-1, 5, 4, -6, -3, 1}, {0, 1, -1, 4, -3, 14}, 30]
  • PARI
    concat([0],Vec((1-2*x^2+2*x^3+x^4)/(1+x-5*x^2-4*x^3+6*x^4+3*x^5-x^6) + O(x^30))) \\ Andrew Howroyd, Feb 25 2018

Formula

G.f.: x*(1 - 2*x^2 + 2*x^3 + x^4)/(1 + x - 5*x^2 - 4*x^3 + 6*x^4 + 3*x^5 - x^6).
a(n) = - a(n-1) + 5*a(n-2) + 4*a(n-3) - 6*a(n-4) - 3*a(n-5) + a(n-6), which from the respective polynomial-type formula follows given by Witula in section "Formula" in A216605.