A216486 a(n) is equal to the rational part (considering of the field Q(sqrt(13))) of the numbers A(n)/sqrt(13), where we have A(n) = ((sqrt(13) - 1)/2)*A(n-1) + A(n-2) + ((3-sqrt(13))/2)*A(n-3), with A(0) = 6, A(1) = sqrt(13) - 1, and A(2) = 11 - sqrt(13).
0, 1, -1, 4, -3, 14, -10, 48, -37, 166, -144, 582, -570, 2067, -2260, 7421, -8923, 26878, -35020, 98039, -136612, 359649, -529990, 1325491, -2046310, 4903786, -7868991, 18199354, -30157768, 67720279, -115255425, 252540383, -439456837, 943488036
Offset: 0
Examples
We have a(5) + a(6) + a(4) + a(2) = a(7) + a(8) + a(6) + a(2) = a(9) + a(5) + a(1) + a(10) + a(8) = 0 and a(6) + a(9) + a(10) = a(11) + a(12) = 12. Moreover, the following relations hold: A(3) = 4*A(1), B(3) = 4*B(1), A(5) = 4*A(3) + 2*sqrt(13), B(5) = 4*B(3)-2*sqrt(13), A(7) = 4*A(5) + 8*sqrt(13), B(7) = 4*B(5)-8*sqrt(13), A(4) = 3*A(2) - 2, B(4) = 3*B(2) + 2, 6 + A(6) = 3*A(4) + A(2), and A(8) - 3*A(6) = 25 - A(5)/2.
References
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15.
- Index entries for linear recurrences with constant coefficients, signature (-1,5,4,-6,-3,1).
Crossrefs
Cf. A216605.
Programs
-
Mathematica
LinearRecurrence[{-1, 5, 4, -6, -3, 1}, {0, 1, -1, 4, -3, 14}, 30]
-
PARI
concat([0],Vec((1-2*x^2+2*x^3+x^4)/(1+x-5*x^2-4*x^3+6*x^4+3*x^5-x^6) + O(x^30))) \\ Andrew Howroyd, Feb 25 2018
Formula
G.f.: x*(1 - 2*x^2 + 2*x^3 + x^4)/(1 + x - 5*x^2 - 4*x^3 + 6*x^4 + 3*x^5 - x^6).
a(n) = - a(n-1) + 5*a(n-2) + 4*a(n-3) - 6*a(n-4) - 3*a(n-5) + a(n-6), which from the respective polynomial-type formula follows given by Witula in section "Formula" in A216605.
Comments