cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216490 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^3*A(x)^5.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 302, 1210, 4979, 20913, 89284, 386308, 1690221, 7465594, 33243970, 149080710, 672682035, 3051859515, 13913105076, 63704186436, 292825392338, 1350782681404, 6251139672412, 29014088205700, 135029529235367, 629978080093921, 2945889534054758
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 302*x^6 + 1210*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 58*x^4 + 222*x^5 + 880*x^6 + 3588*x^7 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 80*x^3 + 330*x^4 + 1391*x^5 + 5950*x^6 +...
Given (1) A(x) = 1 + x*A(x)^2 + x^3*A(x)^5,
suppose (2) A(x) = 1/A(-x*A(x)^3),
then substituting x in (1) with -x*A(x)^3 yields:
1/A(x) = 1 - x*A(x)^3/A(x)^2 - x^3*A(x)^9/A(x)^5,
which illustrates that (2) is consistent with (1).
		

Crossrefs

Cf. A112806.

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax];aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1+x*AGF^2+x^3*AGF^5-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A^2+x^3*A^5 +x*O(x^n));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1/A(-x*A(x)^3); note that the Catalan function C(x) = 1 + x*C(x)^2 also satisfies this condition: C(x) = 1/C(-x*C(x)^3).
Recurrence: 8*n*(2*n+1)*(4*n+1)*(4*n+3)*(18857*n^5 - 123695*n^4 + 307075*n^3 - 357745*n^2 + 193668*n - 38880)*a(n) = (29662061*n^9 - 194572235*n^8 + 475490846*n^7 - 510273230*n^6 + 169643069*n^5 + 97131085*n^4 - 80249496*n^3 + 9135180*n^2 + 4205520*n - 777600)*a(n-1) - 3*(13463898*n^9 - 108514077*n^8 + 347609938*n^7 - 547442512*n^6 + 395255792*n^5 - 25515983*n^4 - 129824028*n^3 + 55362252*n^2 + 3442320*n - 3888000)*a(n-2) + 5*(5*n - 12)*(5*n - 11)*(5*n - 9)*(5*n - 8)*(18857*n^5 - 29410*n^4 + 865*n^3 + 9880*n^2 - 1092*n - 720)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/768*((2775409885 + 28964352 * sqrt(8502))^(2/3) + 1573*(2775409885 + 28964352 * sqrt(8502))^(1/3) + 829273)/(2775409885 + 28964352 * sqrt(8502))^(1/3) = 4.952774592083496... is the root of the equation -3125 + 2142*d - 1573*d^2 + 256*d^3 = 0 and c = 0.3472109760934755295223550512446412412267... - Vaclav Kotesovec, Sep 10 2013
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*n-k+1,n-2*k)/(2*n-k+1). - Seiichi Manyama, Aug 28 2023