A112806 Expansion of solution of functional equation.
1, 1, 2, 6, 21, 79, 312, 1277, 5369, 23049, 100612, 445214, 1992606, 9004260, 41025315, 188259072, 869305315, 4036286518, 18832973733, 88259024068, 415252542641, 1960718710035, 9288106921038, 44129146527731
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.
Programs
-
Maxima
a(n):=sum((binomial(n+2*i+1,i)*sum(binomial(k,n-k-2*i)*(-1)^(n-k)*binomial(n+k+2*i,k),k,0,n-2*i))/(n+2*i+1),i,0,n/2); /* Vladimir Kruchinin, Mar 07 2016 */
-
PARI
{a(n)=local(A); if(n<0, 0, A=x+O(x^4); for(k=1,n, A=x+subst(x^2/(1-x^3),x,x*A)); polcoeff(A,3*n+1))}
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2/(1-x^2*A^3));polcoeff(A,n)} \\ Paul D. Hanna, Jun 06 2012
Formula
Given g.f. A(x), then series reversion of B(x)=x*A(x^3) is -B(-x).
Given g.f. A(x), then y=x*A(x^3) satisfies y=x+(xy)^2/(1-(xy)^3).
G.f. satisfies: A(x) = 1 + x*A(x)^2/(1 - x^2*A(x)^3). - Paul D. Hanna, Jun 06 2012
G.f. satisfies: A(x) = 1/A(-x*A(x)^3); note that the Catalan function C(x) = 1 + x*C(x)^2 (A000108) also satisfies this condition. - Paul D. Hanna, Jun 06 2012
a(n) = Sum_{i=0..n/2}((binomial(n+2*i+1,i)*Sum_{k=0..n-2*i}(binomial(k,n-k-2*i)*(-1)^(n-k)*binomial(n+k+2*i,k)))/(n+2*i+1)). - Vladimir Kruchinin, Mar 07 2016
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(2*n-k+1,n-2*k)/(2*n-k+1). - Seiichi Manyama, Aug 28 2023