cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112806 Expansion of solution of functional equation.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 312, 1277, 5369, 23049, 100612, 445214, 1992606, 9004260, 41025315, 188259072, 869305315, 4036286518, 18832973733, 88259024068, 415252542641, 1960718710035, 9288106921038, 44129146527731
Offset: 0

Views

Author

Michael Somos, Sep 20 2005

Keywords

Crossrefs

Programs

  • Maxima
    a(n):=sum((binomial(n+2*i+1,i)*sum(binomial(k,n-k-2*i)*(-1)^(n-k)*binomial(n+k+2*i,k),k,0,n-2*i))/(n+2*i+1),i,0,n/2); /* Vladimir Kruchinin, Mar 07 2016 */
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x+O(x^4); for(k=1,n, A=x+subst(x^2/(1-x^3),x,x*A)); polcoeff(A,3*n+1))}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2/(1-x^2*A^3));polcoeff(A,n)} \\ Paul D. Hanna, Jun 06 2012
    

Formula

Given g.f. A(x), then series reversion of B(x)=x*A(x^3) is -B(-x).
Given g.f. A(x), then y=x*A(x^3) satisfies y=x+(xy)^2/(1-(xy)^3).
G.f. satisfies: A(x) = 1 + x*A(x)^2/(1 - x^2*A(x)^3). - Paul D. Hanna, Jun 06 2012
G.f. satisfies: A(x) = 1/A(-x*A(x)^3); note that the Catalan function C(x) = 1 + x*C(x)^2 (A000108) also satisfies this condition. - Paul D. Hanna, Jun 06 2012
a(n) = Sum_{i=0..n/2}((binomial(n+2*i+1,i)*Sum_{k=0..n-2*i}(binomial(k,n-k-2*i)*(-1)^(n-k)*binomial(n+k+2*i,k)))/(n+2*i+1)). - Vladimir Kruchinin, Mar 07 2016
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(2*n-k+1,n-2*k)/(2*n-k+1). - Seiichi Manyama, Aug 28 2023

A216493 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^5*A(x)^13.

Original entry on oeis.org

1, 1, 3, 12, 55, 274, 1444, 7923, 44803, 259325, 1529008, 9151327, 55454164, 339543312, 2097460255, 13055579858, 81803671623, 515552408141, 3265924761595, 20784056808550, 132812937949820, 851847261569025, 5482066256568375, 35388168141000935, 229081418808206500, 1486757986305948780, 9672120691595571320
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 274*x^5 + 1444*x^6 + 7923*x^7 +...
Related expansions:
A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1431*x^5 + 7806*x^6 + 43893*x^7 +...
A(x)^13 = 1 + 13*x + 117*x^2 + 910*x^3 + 6578*x^4 + 45643*x^5 + 309127*x^6 +...
Given (1) A(x) = 1 + x*A(x)^3 + x^5*A(x)^13,
suppose (2) A(x) = 1/A(-x*A(x)^5),
then substituting x in (1) with -x*A(x)^5 yields:
1/A(x) = 1 - x*A(x)^5/A(x)^3 - x^5*A(x)^25/A(x)^13,
which illustrates that (2) is consistent with (1).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3+x^5*A^13 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1/A(-x*A(x)^5); note that the g.f. of A001764, G(x) = 1 + x*G(x)^3, also satisfies this condition.
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * binomial(3*n-2*k+1,n-4*k)/(3*n-2*k+1). - Seiichi Manyama, Aug 28 2023

A228987 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^8.

Original entry on oeis.org

1, 1, 3, 13, 66, 364, 2116, 12768, 79222, 502297, 3240120, 21196593, 140295584, 937787728, 6321624862, 42926227470, 293350136170, 2015999854478, 13923926272607, 96598395025615, 672852440805930, 4703751150849738, 32991286060134402, 232091541493091566
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 + 364*x^5 + 2116*x^6 +...
Related expansions:
A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 312*x^4 + 1788*x^5 + 10686*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 328*x^3 + 2082*x^4 + 13384*x^5 + 87124*x^6 +...
Given (1) A(x) = 1 + x*A(x)^3 + x^3*A(x)^8,
suppose (2) A(x) = 1/A(-x*A(x)^5),
then substituting x in (1) with -x*A(x)^5 yields:
1/A(x) = 1 - x*A(x)^5/A(x)^3 - x^3*A(x)^15/A(x)^8,
which illustrates that (2) is consistent with (1).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3+x^3*A^8 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1/A(-x*A(x)^5); note that the function G(x) = 1 + x*G(x)^3 (g.f. of A001764) also satisfies this condition: G(x) = 1/G(-x*G(x)^5).
a(n) ~ sqrt((3 - r*s^2)/(2*Pi*(3 + 28*r^2*s^5))) / (4*n^(3/2)*r^(n + 1/2)), where r = 0.1331154541373089587498695338172936885734070972340... and s = 1.408602671059676188189711196409966797670750551605... are real roots of the system of equations 1 + r*s^3 + r^3*s^8 = s, 3*r*s^2 + 8*r^3*s^7 = 1. - Vaclav Kotesovec, Nov 22 2017
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(3*n-k+1,n-2*k)/(3*n-k+1). - Seiichi Manyama, Aug 28 2023

A367056 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^3*A(x).

Original entry on oeis.org

1, 1, 2, 6, 17, 52, 168, 561, 1922, 6719, 23871, 85938, 312823, 1149421, 4257460, 15880036, 59594517, 224856450, 852491806, 3245959002, 12407332166, 47592364107, 183139542306, 706794663136, 2735053815771, 10609811267757, 41251228784198
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • Maple
    A367056 := proc(n)
        add(binomial(n-2*k+1,k) * binomial(2*n-5*k,n-3*k)/(n-2*k+1),k=0..floor(n/3)) ;
    end proc:
    seq(A367056(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k+1, k)*binomial(2*n-5*k, n-3*k)/(n-2*k+1));

Formula

G.f.: A(x) = 2 / (1-x^3+sqrt((1-x^3)^2-4*x)).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k+1,k) * binomial(2*n-5*k,n-3*k)/(n-2*k+1).
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-2*n+7)*a(n-3) +(n-8)*a(n-6)=0. - R. J. Mathar, Dec 04 2023
Showing 1-4 of 4 results.