cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A013705 Decimal expansion of 4*Sum_{k=1..500000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 0, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 4, 0, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 6, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 2, 9, 1, 3, 9, 9, 3, 7, 5, 1, 0, 3, 0, 5, 0, 9, 7, 4, 9, 4, 4, 6, 9, 3, 3, 4, 9, 8, 1, 6, 4, 0, 0, 8, 8, 0, 6, 7, 8, 9, 9, 9, 0, 2, 6, 7, 5, 6, 7, 8, 7, 3, 0, 3, 3, 3, 4, 0, 4, 3, 6, 9, 6, 9, 5
Offset: 1

Views

Author

Keywords

Comments

An approximation to Pi.
A case of "high precision fraud": curiously, among the first 40 digits, only 4 are wrong (in positions 7, 18, 19 and 30). - Jean-François Alcover, Apr 23 2013
This result arises because the sum is Pi - 2*10^-6 + 2*10^-18 - 10^-29 + 122*10^-42 - ... - Jon E. Schoenfield, Mar 11 2018
The constant is rational, as a finite product of rational numbers. The period of its decimal expansion is L = 1.7368897... * 10^33024, and so a(n + L) = a(n) for large enough n.

Examples

			3.1415906535897932404626433832695028841972913993751030509749446933498...
		

Crossrefs

Programs

  • PARI
    4*sum(k=1, 500000, (-1.)^(k-1)/(2*k-1)) \\ Michel Marcus, Mar 11 2018

Extensions

a(78)-a(80) corrected and more digits from Jon E. Schoenfield, Mar 11 2018

A013706 Decimal expansion of 2*Sum_{k=1..50000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

1, 5, 7, 0, 7, 8, 6, 3, 2, 6, 7, 9, 4, 8, 9, 7, 6, 1, 9, 2, 3, 1, 3, 2, 1, 1, 9, 1, 6, 3, 9, 7, 5, 2, 0, 5, 2, 0, 9, 8, 5, 8, 3, 3, 1, 4, 6, 8, 7, 5, 5, 7, 9, 6, 2, 5, 8, 7, 4, 4, 5, 2, 6, 8, 5, 0, 4, 1, 0, 7, 5, 6, 4, 1, 2, 2, 1, 6, 5, 3, 4, 8, 1, 2, 3, 5, 6, 6, 2, 0, 9, 0, 5, 5, 0, 9, 7, 3, 5, 2, 6, 8, 8, 4, 3, 6, 3, 2, 7, 4, 2, 5, 0, 9, 3, 7, 0, 4, 8, 2, 5, 0, 6, 1, 9, 3
Offset: 1

Views

Author

Keywords

Comments

A deceptively correct-looking approximation to Pi/2.

Examples

			Pi/2:     1.570796326794896619231321691639751442098584699687552910487472...
This sum: 1.570786326794897619231321191639752052098583314687557962587445...
..........================^=================^^^======^^^^=====^=^^^===^^...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Sum[(-1)^(k-1)/(2k-1),{k,50000}],10,130][[1]] (* Harvey P. Dale, Oct 23 2012 *)

Extensions

Entry revised by N. J. A. Sloane, Sep 08 2012

A195793 Decimal expansion of arctan(1000000).

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 5, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 5, 6, 4, 6, 5, 5, 0, 2, 4, 9, 7, 2, 8, 8, 4, 7, 7, 5, 4, 3, 1, 9, 1, 8, 1, 7, 5, 8, 7, 8, 0, 2, 9, 1, 0, 0, 8, 5, 2, 5, 5, 1, 6, 6, 1, 2, 3, 3, 3, 6, 4, 1, 9, 1, 5, 9, 9, 0, 9, 2, 8, 7, 8, 3, 7, 9, 3, 9, 6, 4, 7, 8, 1, 1, 6, 7, 9, 0, 5, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2011

Keywords

Comments

pi/2-arctan(1000000)<1/1000000; the first nonzero digits of pi/2-arctan(1000000) are as follows:
999999999999666666666666866666666666. The twelve 6's before 8 correspond to the limit shown at the end of the Mathematica program. What about the next eleven 6's?

Examples

			Let x=pi/2 and y=arc(1000000); then
x=1.57079632679489661923132169163975144209858469968755291048...
y=1.57079532679489661956465502497288477543191817587802910085...
x-y=0.000000099999999999966666666666686666666666652380963492...
		

Crossrefs

For other approximations to Pi see A216542, A013706, A216543, A216544, A216545, A013705, A216546, A216547, A216548. - N. J. A. Sloane, Sep 08 2012

Programs

  • Mathematica
    N[Pi/2, 100]
    N[ArcTan[10^6], 100]
    RealDigits[%]  (* A195793 *)
    Limit[n^2 - (n^3) (Pi/2 - ArcTan[n]), n -> Infinity]
    (* Limit equals 1/3 *)
  • PARI
    atan(1e6) \\ Charles R Greathouse IV, Nov 20 2024

A216542 Decimal expansion of Sum_{k=1..50000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

7, 8, 5, 3, 9, 3, 1, 6, 3, 3, 9, 7, 4, 4, 8, 8, 0, 9, 6, 1, 5, 6, 6, 0, 5, 9, 5, 8, 1, 9, 8, 7, 6, 0, 2, 6, 0, 4, 9, 2, 9, 1, 6, 5, 7, 3, 4, 3, 7, 7, 8, 9, 8, 1, 2, 9, 3, 7, 2, 2, 6, 3, 4, 2, 5, 2, 0, 5, 3, 7, 8, 2, 0, 6, 1, 0, 8, 2, 6, 7, 4, 0, 6, 1, 7, 8, 3, 1, 0, 4, 5, 2, 7, 5, 4, 8, 6, 7, 6, 3, 4, 4, 2, 1, 8, 1, 6, 3, 7, 1, 2, 5, 4, 6, 8, 5, 2, 4, 1, 2, 5, 3, 0, 9, 6
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

A deceptively correct-looking approximation to Pi/4. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			Pi/4:     0.785398163397448309615660845819875721049292349843776455...
This sum: 0.785393163397448809615660595819876026049291657343778981...
..........=================^========^^======^^=^=====^^^^^====^^^^...
		

Crossrefs

Programs

  • Maple
    Digits:=300; M:=50000; add(evalf((-1)^(k-1)/(2*k-1)), k=1..M);
  • Mathematica
    First[RealDigits[Sum[(-1)^(k-1)/(2*k-1), {k, 50000}], 10, 100]] (* Paolo Xausa, Apr 23 2024 *)

Formula

Equals A013706/2. - Hugo Pfoertner, Apr 23 2024

A216543 Decimal expansion of 4*Sum_{k=1..50000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

3, 1, 4, 1, 5, 7, 2, 6, 5, 3, 5, 8, 9, 7, 9, 5, 2, 3, 8, 4, 6, 2, 6, 4, 2, 3, 8, 3, 2, 7, 9, 5, 0, 4, 1, 0, 4, 1, 9, 7, 1, 6, 6, 6, 2, 9, 3, 7, 5, 1, 1, 5, 9, 2, 5, 1, 7, 4, 8, 9, 0, 5, 3, 7, 0, 0, 8, 2, 1, 5, 1, 2, 8, 2, 4, 4, 3, 3, 0, 6, 9, 6, 2, 4, 7, 1, 3, 2, 4, 1, 8, 1, 1, 0, 1, 9, 4, 7, 0, 5, 3, 7, 6, 8, 7, 2, 6, 5, 4, 8, 5, 0, 1, 8, 7, 4, 0, 9, 6, 5, 0, 1, 2, 3, 8
Offset: 1

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

An approximation to Pi. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			3.14157265358979523846264238327950410419716662937511592517489...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[4*Sum[(-1)^(k-1)/(2*k-1), {k, 50000}], 10, 100]] (* Paolo Xausa, May 11 2024 *)

A216544 Decimal expansion of Sum_{k=1..500000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

7, 8, 5, 3, 9, 7, 6, 6, 3, 3, 9, 7, 4, 4, 8, 3, 1, 0, 1, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 7, 3, 7, 5, 7, 2, 1, 0, 4, 9, 3, 2, 2, 8, 4, 9, 8, 4, 3, 7, 7, 5, 7, 6, 2, 7, 4, 3, 7, 3, 6, 1, 7, 3, 3, 3, 7, 4, 5, 4, 1, 0, 0, 2, 2, 0, 1, 6, 9, 7, 4, 9, 7, 5, 6, 6, 8, 9, 1, 9, 6, 8, 2, 5, 8, 3, 3, 5, 1, 0, 9, 2, 4, 2, 3, 9, 4, 6, 1, 4, 6, 5, 8, 5, 5, 8, 9, 1, 0, 6, 7, 6, 8, 9, 3
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

An approximation to Pi/4. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			0.7853976633974483101156608458173757210493228498437757627437361733374541...
		

Crossrefs

Programs

  • Maple
    Digits:=300; M:=500000; add(evalf((-1)^(k-1)/(2*k-1)), k=1..M);
  • Mathematica
    RealDigits[Sum[(-1)^(k-1)/(2k-1),{k,500000}],10,130][[1]] (* Harvey P. Dale, Sep 11 2024 *)

A216545 Decimal expansion of 2*Sum_{k=1..500000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 5, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 2, 0, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 4, 7, 5, 1, 4, 4, 2, 0, 9, 8, 6, 4, 5, 6, 9, 9, 6, 8, 7, 5, 5, 1, 5, 2, 5, 4, 8, 7, 4, 7, 2, 3, 4, 6, 6, 7, 4, 9, 0, 8, 2, 0, 0, 4, 4, 0, 3, 3, 9, 4, 9, 9, 5, 1, 3, 3, 7, 8, 3, 9, 3, 6, 5, 1, 6, 6, 7, 0, 2, 1, 8, 4, 8, 4, 7, 8, 9, 2, 2, 9, 3, 1, 7, 1, 1, 7, 8, 2, 1, 3, 5, 3, 7, 8, 7
Offset: 1

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

An approximation to Pi/2. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			1.57079532679489662023132169163475144209864569968755152548747...
		

Crossrefs

A216546 Decimal expansion of Sum_{k=1..5000000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

7, 8, 5, 3, 9, 8, 1, 1, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 6, 1, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 6, 9, 6, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 6, 8, 2, 6, 4, 5, 5, 2, 4, 3, 7, 3, 5, 4, 5, 5, 5, 7, 6, 9, 5, 4, 1, 0, 1, 8, 2, 4, 1, 5, 7, 2, 4, 9, 6, 5, 6, 8, 7, 3, 5, 6, 8, 0, 8, 5, 5, 2, 9, 3, 6, 6, 6, 7, 6, 0, 2, 7, 5, 2, 1, 5, 3, 1, 3, 6, 3, 0, 1, 5, 9, 3, 6, 8, 9, 3, 7
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

An approximation to Pi/4. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			0.7853981133974483096161608458198756960492923498468264552437...
		

Crossrefs

Programs

  • Maple
    Digits:=300; M:=5000000; add(evalf((-1)^(k-1)/(2*k-1)), k=1..M);
  • Mathematica
    RealDigits[Total[Table[(-1)^(k-1)/(2k-1),{k,5*10^6}]],10,130][[1]] (* Harvey P. Dale, May 06 2015 *)

A216547 Decimal expansion of 2*Sum_{k=1..5000000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 6, 2, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 2, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 3, 9, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 9, 3, 6, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 0, 9, 1, 1, 1, 5, 3, 9, 0, 8, 2, 0, 3, 6, 4, 8, 3, 1, 4, 4, 9, 9, 3, 1, 3, 7, 4, 7, 1, 3, 6, 1, 7, 1, 0, 5, 8, 7, 3, 3, 3, 5, 2, 0, 5, 5, 0, 4, 3, 0, 6, 2, 7, 2, 6, 0, 3, 1, 8, 7, 3, 7, 8, 7, 4
Offset: 1

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

An approximation to Pi/2. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			1.57079622679489661923232169163975139209858469969365291048747...
		

Crossrefs

Showing 1-9 of 9 results.