cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216584 a(n) = A002426(n)*A000984(n); product of central trinomial coefficients and central binomial coefficients.

Original entry on oeis.org

1, 2, 18, 140, 1330, 12852, 130284, 1348776, 14247090, 152618180, 1654120468, 18096447096, 199536967084, 2214714164600, 24720932068200, 277289164574640, 3123590583844530, 35318969120870820, 400692715550057700, 4559427798654821400, 52020436064931914580
Offset: 0

Views

Author

Paul D. Hanna, Sep 08 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 18*x^2/2 + 140*x^3/3 + 1330*x^4/4 + 12852*x^5/5 + 130284*x^6/6 + ...
where
exp(L(x)) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 + ... + A216585(n)*x^n/n + ...
The central trinomial coefficients (A002426) begin:
[1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, ...];
The central binomial coefficients (A000984) begin:
[1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, ...].
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*n, n]*Sum[ Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    {a(n) = polcoeff((1+x+x^2)^n,n) * polcoeff((1+2*x+x^2)^n,n)}
    
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,n\2,binomial(n,2*k)*binomial(2*k,k))}
    for(n=0,21,print1(a(n),", "))

Formula

a(n) = binomial(2*n, n) * Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k, k).
Logarithmic derivative of A216585, after ignoring initial term a(0).
a(n) = [x^n*y^n] ( 1 + (x + y)^2 + (x + y)^4 )^n. - Peter Bala, Feb 17 2020
G.f.: hypergeom([1/2, 1/2],[1],16*x/(1+4*x))/sqrt(1+4*x). - Mark van Hoeij, May 13 2025