cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216638 First appearance of the Fibonacci numbers in the decimals of Pi.

Original entry on oeis.org

1, 1, 6, 9, 4, 11, 110, 93, 86, 130, 11, 1638, 229, 3056, 268, 1510, 10118, 11477, 727, 17711, 83295, 59861, 22334, 19659, 301848, 977089, 59943, 414086, 536681, 649382, 2729036, 68232754, 17793212, 33986473, 695781, 135830965, 117951651, 36978613, 170243036, 366567058
Offset: 1

Views

Author

Keywords

Examples

			Fibonacci(4) is 3, 3 appears for the first time in decimals of Pi in position 9, so a(4) = 9.
		

Crossrefs

Programs

  • Mathematica
    (* Determine the decimal digits of Pi following the decimal point. *)
    decimalPiDigits[n_] := First@RealDigits[Pi, 10, n, -1];
    (* Find the position of first occurrence of 'sublist' in 'list', or Indeterminate if it doesn't occur. *)
    firstPosition[sublist_, list_] :=
      With[{p = SequencePosition[list, sublist]},
       If[Length[p] == 0, Indeterminate, First@First@p]];
    (* Find the first occurrence of the given digits in the decimal digits of Pi by calculating ever more digits of Pi, as needed. *)
    findDigitSequenceInDecimalPiDigits[seq_] :=
      First@NestWhile[
        With[
          {
           numdigits = Max[1, 2*Last[#]] (*
           How many digits will we calculate in this iteration? *)
           },
          {firstPosition[seq, decimalPiDigits[numdigits]], numdigits}
          ] &,
        {Indeterminate, 0},
        Not@*IntegerQ@*First
        ];
    (* Find the first 30 entries. *)
    Table[findDigitSequenceInDecimalPiDigits[
      IntegerDigits@Fibonacci[n]], {n, 1, 30}]
    (* Sidney Cadot, Feb 25 2023 *)

Formula

a(n) = A014777(A000045(n)). - Pontus von Brömssen, Aug 31 2024

Extensions

a(31)-a(40) from Pontus von Brömssen, Aug 31 2024