A216652 Triangular array read by rows: T(n,k) is the number of compositions of n into exactly k distinct parts.
1, 1, 1, 2, 1, 2, 1, 4, 1, 4, 6, 1, 6, 6, 1, 6, 12, 1, 8, 18, 1, 8, 24, 24, 1, 10, 30, 24, 1, 10, 42, 48, 1, 12, 48, 72, 1, 12, 60, 120, 1, 14, 72, 144, 120, 1, 14, 84, 216, 120, 1, 16, 96, 264, 240, 1, 16, 114, 360, 360, 1, 18, 126, 432, 600, 1, 18, 144, 552, 840
Offset: 1
Examples
Triangle starts: [ 1] 1; [ 2] 1; [ 3] 1, 2; [ 4] 1, 2; [ 5] 1, 4; [ 6] 1, 4, 6; [ 7] 1, 6, 6; [ 8] 1, 6, 12; [ 9] 1, 8, 18; [10] 1, 8, 24, 24; [11] 1, 10, 30, 24; [12] 1, 10, 42, 48; [13] 1, 12, 48, 72; [14] 1, 12, 60, 120; [15] 1, 14, 72, 144, 120; [16] 1, 14, 84, 216, 120; [17] 1, 16, 96, 264, 240; [18] 1, 16, 114, 360, 360; [19] 1, 18, 126, 432, 600; [20] 1, 18, 144, 552, 840; T(5,2) = 4 because we have: 4+1, 1+4, 3+2, 2+3.
Links
- Alois P. Heinz, Rows n = 1..500, flattened
- B. Richmond and A. Knopfmacher, Compositions with distinct parts, Aequationes Mathematicae 49 (1995), pp. 86-97.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1, `if`(k<1, 0, b(n, k-1) +b(n-k, k)))) end: T:= (n, k)-> b(n-k*(k+1)/2, k)*k!: seq(seq(T(n, k), k=1..floor((sqrt(8*n+1)-1)/2)), n=1..24); # Alois P. Heinz, Sep 12 2012
-
Mathematica
nn=20;f[list_]:=Select[list,#>0&];Map[f,Drop[CoefficientList[Series[ Sum[Product[j y x^j/(1-x^j),{j,1,k}],{k,0,nn}],{x,0,nn}],{x,y}],1]]//Flatten
Formula
G.f.: Sum_{i>=0} Product_{j=1..i} y*j*x^j/(1-x^j).
T(n,k) = A008289(n,k)*k!.
Comments