cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216754 Digital root of fourth power of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9, 1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9
Offset: 0

Views

Author

Ravi Bhandari, Sep 15 2012

Keywords

Comments

This sequence is periodic with period 12. Also, the first (2n - 1) terms are symmetric about n-th term, where n = 6k, k = 1, 2, 3, ...

Crossrefs

Programs

  • Mathematica
    Table[NestWhile[Total[IntegerDigits[#]] &, Fibonacci[n]^4, # > 9 &], {n, 0, 86}] (* T. D. Noe, Oct 15 2012 *)
    Join[{0},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 1, 7, 9, 4, 1, 4, 9, 7, 1, 1, 9},108]] (* Ray Chandler, Aug 27 2015 *)

Extensions

Extended by Ray Chandler, Aug 27 2015

A216755 Digital root of the fifth power of Fibonacci(n).

Original entry on oeis.org

1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9, 7, 1, 2, 9, 5, 8, 1, 9, 1, 1, 5, 9
Offset: 1

Views

Author

Ravi Bhandari, Sep 15 2012

Keywords

Comments

This sequence is periodic with period 24, i.e. gcd(period of digital roots of squares of Fibonacci, period of digital roots of cubes of Fibonacci)

Crossrefs

Programs

  • Mathematica
    (* First run program for A211821 to define digitalRoot *) Table[digitalRoot[Fibonacci[n]^5], {n, 90}] (* Alonso del Arte, Sep 15 2012 *)
    LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1},{1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9},100] (* Ray Chandler, Aug 27 2015 *)

Formula

a(n) = A010888(A056572(n)).
a(n) = a(n-4) - a(n-12) + a(n-16). - R. J. Mathar, Sep 15 2012
G.f. x*( -1-x-5*x^2-9*x^3-x^4-7*x^5-2*x^6-2*x^8+7*x^9-x^10-5*x^12-8*x^13-x^14-9*x^15 ) / ( (x-1) *(1+x) *(x^2+1) *(x^4+1) *(x^8-x^4+1) ). - R. J. Mathar, Sep 15 2012
Showing 1-2 of 2 results.