cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A165961 Number of circular permutations of length n without 3-sequences.

Original entry on oeis.org

1, 5, 20, 102, 627, 4461, 36155, 328849, 3317272, 36757822, 443846693, 5800991345, 81593004021, 1228906816941, 19733699436636, 336554404751966, 6075478765948135, 115734570482611885, 2320148441078578447, 48827637296350480457, 1076313671861962141616
Offset: 3

Views

Author

Isaac Lambert, Oct 01 2009

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n. 3-sequences are of the form i,i+1,i+2. Sequence gives number of permutations of [n] starting with 1 and having no 3-sequences.
a(n) is also the number of permutations of length n-1 without consecutive fixed points (cf. A180187). - David Scambler, Mar 27 2011

Examples

			For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 15 2012 [broken link]

Crossrefs

Cf. A000166, A180186, - Emeric Deutsch, Sep 07 2010
A column of A216718. - N. J. A. Sloane, Sep 15 2012

Programs

  • Maple
    d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k, k)*d[n-k-1], k = 0 .. floor((1/2)*n)) end proc: seq(a(n), n = 3 .. 23); # Emeric Deutsch, Sep 07 2010
  • Mathematica
    a[n_] := Sum[Binomial[n-k, k] Subfactorial[n-k-1], {k, 0, n/2}];
    a /@ Range[3, 21] (* Jean-François Alcover, Oct 29 2019 *)

Formula

Let b(n) be the sequence A002628. Then for n > 5, this sequence satisfies a(n) = b(n-1) - b(n-3) + a(n-3).
a(n) = Sum_{k=0..n/2} binomial(n-k,k)*d(n-k-1), where d(j)=A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 07 2010

Extensions

More terms from Emeric Deutsch, Sep 07 2010
Edited by N. J. A. Sloane, Apr 04 2011

A216719 Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 2 and length 3 (n >= 3, k >= 0).

Original entry on oeis.org

2, 6, 22, 2, 109, 10, 1, 657, 55, 7, 1, 4625, 356, 54, 4, 1, 37186, 2723, 362, 44, 4, 1, 336336, 23300, 2837, 368, 34, 4, 1, 3379058, 220997, 25408, 2967, 330, 35, 4, 1, 37328103, 2308564, 249736, 26964, 3100, 292, 36, 4, 1
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
         2
         6
        22       2
       109      10      1
       657      55      7     1
      4625     356     54     4    1
     37186    2723    362    44    4   1
    336336   23300   2837   368   34   4  1
   3379058  220997  25408  2967  330  35  4 1
  37328103 2308564 249736 26964 3100 292 36 4 1
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Columns 1..2 are A174074, A216721.
Row sums are A000142(n-1).

A216722 Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 1 and length 3 (n >= 3, 0 <= k <= n).

Original entry on oeis.org

1, 0, 0, 1, 5, 0, 0, 0, 1, 18, 5, 0, 0, 0, 1, 95, 18, 6, 0, 0, 0, 1, 600, 84, 28, 7, 0, 0, 0, 1, 4307, 568, 116, 40, 8, 0, 0, 0, 1, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
       1,     0,    0,    1;
       5,     0,    0,    0,   1;
      18,     5,    0,    0,   0,  1;
      95,    18,    6,    0,   0,  0,  1;
     600,    84,   28,    7,   0,  0,  0, 1;
    4307,   568,  116,   40,   8,  0,  0, 0, 1;
   35168,  4122,  810,  156,  54,  9,  0, 0, 0, 1;
  321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1;
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Columns 1..2 are A165962, A216723.
Row sums are A000142(n-1).

A180187 Number of successions in all the permutations p of [n] such that p(1)=1 and having no 3-sequences. A succession of a permutation p is a position i such that p(i +1) - p(i) = 1.

Original entry on oeis.org

0, 1, 0, 3, 14, 72, 468, 3453, 28782, 267831, 2752828, 30984336, 379125192, 5011756625, 71190365580, 1081514329155, 17499480412746, 300473929597320, 5457031426340748, 104520033700333069, 2105651342251571562
Offset: 1

Views

Author

Emeric Deutsch, Sep 06 2010

Keywords

Comments

From Emeric Deutsch, Sep 07 2010: (Start)
a(n) is also the number of fixed points in all those permutations of [n-1] that have no adjacent fixed points. Example: a(4)=3 because in 132, 213, 231, 312, 321 we have 1+1+0+0+1 fixed points.
a(n) is also the number of permutations of [n] having exactly 1 pair of adjacent fixed points. Example: a(4)=3 because we have 1243, 4231, and 2134.
(End)

Examples

			a(4)=3 because in 1*243, 1324, 13*42, 142*3, 1432 we have 3 successions (marked *).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 15 2012

Crossrefs

A column of A216718. - N. J. A. Sloane, Sep 15 2012

Programs

  • Maple
    d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: seq(sum(k*binomial(n-k, k)*d[n-1-k], k = 0 .. floor((1/2)*n)), n = 1 .. 22);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = n*a[n - 1] + (-1)^n; f[n_] := Sum[k*Binomial[n - k, k]*a[n - k - 1], {k, 0, n/2}]; Array[f, 21] (* Robert G. Wilson v, Apr 01 2011 *)
    a[n_] := Sum[k Binomial[n - k, k] Subfactorial[n - k - 1], {k, 0, n/2}];
    a /@ Range[1, 21] (* Jean-François Alcover, Oct 29 2019 *)

Formula

a(n) = Sum_{k>=0} k*A180186(n,k).
a(n) = Sum_{k=0..floor(n/2)} k*binomial(n-k,k)*d(n-1-k), where d(j)=A000166(j) are the derangement numbers.

A216724 Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 2, 3, 3, 24, 0, 100, 15, 0, 5, 594, 108, 18, 0, 4389, 504, 119, 21, 0, 7, 35744, 3520, 960, 64, 32, 0, 325395, 31077, 5238, 927, 207, 27, 0, 9, 3288600, 288300, 42050, 8800, 900, 100, 50, 0, 36489992, 2946141, 409827, 59785, 9174, 1518, 319, 33, 0, 11
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
        1
        1
        2
        3      3
       24      0
      100     15     0    5
      594    108    18    0
     4389    504   119   21   0   7
    35744   3520   960   64  32   0
   325395  31077  5238  927 207  27  0 9
  3288600 288300 42050 8800 900 100 50 0
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.

Crossrefs

Column 1 is A174073.
Row sums are A000142.

Programs

  • Maple
    b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
         `if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
            b(s minus {j}, y, j, n), j=s)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
             iquo(n-1,2)*2-1)))(b({$1..n}, 0$2, n)):
    seq(T(n), n=0..11);  # Alois P. Heinz, Apr 13 2021
  • Mathematica
    b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
         If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
         b[s~Complement~{j}, y, j, n], {j, s}]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
         Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
    Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Apr 13 2021

A216726 Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 2 and length 3 (n >= 3, 0 <= k <= n).

Original entry on oeis.org

11, 0, 0, 1, 6, 0, 0, 0, 0, 18, 5, 0, 0, 0, 1, 93, 18, 9, 0, 0, 0, 0, 600, 84, 28, 7, 0, 0, 0, 1, 4320, 512, 192, 0, 16, 0, 0, 0, 0, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321630, 34000, 5625, 1400, 200, 0, 25, 0, 0, 0, 0
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
1 0 0 1
6 0 0 0 0
18 5 0 0 0 1
93 18 9 0 0 0 0
600 84 28 7 0 0 0 1
4320 512 192 0 16 0 0 0 0
35168 4122 810 156 54 9 0 0 0 1
321630 34000 5625 1400 200 0 25 0 0 0 0
...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Showing 1-6 of 6 results.