A165961
Number of circular permutations of length n without 3-sequences.
Original entry on oeis.org
1, 5, 20, 102, 627, 4461, 36155, 328849, 3317272, 36757822, 443846693, 5800991345, 81593004021, 1228906816941, 19733699436636, 336554404751966, 6075478765948135, 115734570482611885, 2320148441078578447, 48827637296350480457, 1076313671861962141616
Offset: 3
For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 15 2012 [broken link]
- Michael De Vlieger, Table of n, a(n) for n = 3..450
- Wayne M. Dymacek and Isaac Lambert, Permutations Avoiding Runs of i, i+1, i+2 or i, i-1, i-2, Journal of Integer Sequences, Vol. 14 (2011), Article 11.1.6.
- Kyle Parsons, Arithmetic progressions in permutations, Thesis, 2011.
-
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k, k)*d[n-k-1], k = 0 .. floor((1/2)*n)) end proc: seq(a(n), n = 3 .. 23); # Emeric Deutsch, Sep 07 2010
-
a[n_] := Sum[Binomial[n-k, k] Subfactorial[n-k-1], {k, 0, n/2}];
a /@ Range[3, 21] (* Jean-François Alcover, Oct 29 2019 *)
A216719
Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 2 and length 3 (n >= 3, k >= 0).
Original entry on oeis.org
2, 6, 22, 2, 109, 10, 1, 657, 55, 7, 1, 4625, 356, 54, 4, 1, 37186, 2723, 362, 44, 4, 1, 336336, 23300, 2837, 368, 34, 4, 1, 3379058, 220997, 25408, 2967, 330, 35, 4, 1, 37328103, 2308564, 249736, 26964, 3100, 292, 36, 4, 1
Offset: 3
Triangle begins:
2
6
22 2
109 10 1
657 55 7 1
4625 356 54 4 1
37186 2723 362 44 4 1
336336 23300 2837 368 34 4 1
3379058 220997 25408 2967 330 35 4 1
37328103 2308564 249736 26964 3100 292 36 4 1
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A216722
Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 1 and length 3 (n >= 3, 0 <= k <= n).
Original entry on oeis.org
1, 0, 0, 1, 5, 0, 0, 0, 1, 18, 5, 0, 0, 0, 1, 95, 18, 6, 0, 0, 0, 1, 600, 84, 28, 7, 0, 0, 0, 1, 4307, 568, 116, 40, 8, 0, 0, 0, 1, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1
Offset: 3
Triangle begins:
1, 0, 0, 1;
5, 0, 0, 0, 1;
18, 5, 0, 0, 0, 1;
95, 18, 6, 0, 0, 0, 1;
600, 84, 28, 7, 0, 0, 0, 1;
4307, 568, 116, 40, 8, 0, 0, 0, 1;
35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1;
321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1;
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A180187
Number of successions in all the permutations p of [n] such that p(1)=1 and having no 3-sequences. A succession of a permutation p is a position i such that p(i +1) - p(i) = 1.
Original entry on oeis.org
0, 1, 0, 3, 14, 72, 468, 3453, 28782, 267831, 2752828, 30984336, 379125192, 5011756625, 71190365580, 1081514329155, 17499480412746, 300473929597320, 5457031426340748, 104520033700333069, 2105651342251571562
Offset: 1
a(4)=3 because in 1*243, 1324, 13*42, 142*3, 1432 we have 3 successions (marked *).
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 15 2012
-
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: seq(sum(k*binomial(n-k, k)*d[n-1-k], k = 0 .. floor((1/2)*n)), n = 1 .. 22);
-
a[0] = 1; a[n_] := a[n] = n*a[n - 1] + (-1)^n; f[n_] := Sum[k*Binomial[n - k, k]*a[n - k - 1], {k, 0, n/2}]; Array[f, 21] (* Robert G. Wilson v, Apr 01 2011 *)
a[n_] := Sum[k Binomial[n - k, k] Subfactorial[n - k - 1], {k, 0, n/2}];
a /@ Range[1, 21] (* Jean-François Alcover, Oct 29 2019 *)
A216724
Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).
Original entry on oeis.org
1, 1, 2, 3, 3, 24, 0, 100, 15, 0, 5, 594, 108, 18, 0, 4389, 504, 119, 21, 0, 7, 35744, 3520, 960, 64, 32, 0, 325395, 31077, 5238, 927, 207, 27, 0, 9, 3288600, 288300, 42050, 8800, 900, 100, 50, 0, 36489992, 2946141, 409827, 59785, 9174, 1518, 319, 33, 0, 11
Offset: 0
Triangle begins:
1
1
2
3 3
24 0
100 15 0 5
594 108 18 0
4389 504 119 21 0 7
35744 3520 960 64 32 0
325395 31077 5238 927 207 27 0 9
3288600 288300 42050 8800 900 100 50 0
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.
-
b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
`if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
b(s minus {j}, y, j, n), j=s)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
iquo(n-1,2)*2-1)))(b({$1..n}, 0$2, n)):
seq(T(n), n=0..11); # Alois P. Heinz, Apr 13 2021
-
b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
b[s~Complement~{j}, y, j, n], {j, s}]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
A216726
Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 2 and length 3 (n >= 3, 0 <= k <= n).
Original entry on oeis.org
11, 0, 0, 1, 6, 0, 0, 0, 0, 18, 5, 0, 0, 0, 1, 93, 18, 9, 0, 0, 0, 0, 600, 84, 28, 7, 0, 0, 0, 1, 4320, 512, 192, 0, 16, 0, 0, 0, 0, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321630, 34000, 5625, 1400, 200, 0, 25, 0, 0, 0, 0
Offset: 3
Triangle begins:
1 0 0 1
6 0 0 0 0
18 5 0 0 0 1
93 18 9 0 0 0 0
600 84 28 7 0 0 0 1
4320 512 192 0 16 0 0 0 0
35168 4122 810 156 54 9 0 0 0 1
321630 34000 5625 1400 200 0 25 0 0 0 0
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
Showing 1-6 of 6 results.
Comments