Original entry on oeis.org
2, 10, 55, 356, 2723, 23300, 220997, 2308564
Offset: 5
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A174074
Number of circular permutations of length n without consecutive triples i,i+2,i+4.
Original entry on oeis.org
1, 1, 1, 2, 6, 22, 109, 657, 4625, 37186, 336336, 3379058, 37328103, 449669577, 5866178493, 82387080624, 1239364493118, 19881771085788, 338797668091565, 6111688544942463, 116354993433563797, 2331395107113471188, 49042688584011866880, 1080639600739277669092, 24891049832682424745839
Offset: 0
Since a(5)=22, there are (5-1)!-22=2 circular permutations with consecutive triples i,i+2,i+4 in all circular permutations of length 5. They are exactly (0,2,4,1,3) and (0,2,4,3,1).
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
a(0)-a(2) prepended and terms a(16) onward added by
Max Alekseyev, Feb 04 2024
A216722
Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 1 and length 3 (n >= 3, 0 <= k <= n).
Original entry on oeis.org
1, 0, 0, 1, 5, 0, 0, 0, 1, 18, 5, 0, 0, 0, 1, 95, 18, 6, 0, 0, 0, 1, 600, 84, 28, 7, 0, 0, 0, 1, 4307, 568, 116, 40, 8, 0, 0, 0, 1, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1
Offset: 3
Triangle begins:
1, 0, 0, 1;
5, 0, 0, 0, 1;
18, 5, 0, 0, 0, 1;
95, 18, 6, 0, 0, 0, 1;
600, 84, 28, 7, 0, 0, 0, 1;
4307, 568, 116, 40, 8, 0, 0, 0, 1;
35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1;
321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1;
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A216724
Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).
Original entry on oeis.org
1, 1, 2, 3, 3, 24, 0, 100, 15, 0, 5, 594, 108, 18, 0, 4389, 504, 119, 21, 0, 7, 35744, 3520, 960, 64, 32, 0, 325395, 31077, 5238, 927, 207, 27, 0, 9, 3288600, 288300, 42050, 8800, 900, 100, 50, 0, 36489992, 2946141, 409827, 59785, 9174, 1518, 319, 33, 0, 11
Offset: 0
Triangle begins:
1
1
2
3 3
24 0
100 15 0 5
594 108 18 0
4389 504 119 21 0 7
35744 3520 960 64 32 0
325395 31077 5238 927 207 27 0 9
3288600 288300 42050 8800 900 100 50 0
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.
-
b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
`if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
b(s minus {j}, y, j, n), j=s)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
iquo(n-1,2)*2-1)))(b({$1..n}, 0$2, n)):
seq(T(n), n=0..11); # Alois P. Heinz, Apr 13 2021
-
b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
b[s~Complement~{j}, y, j, n], {j, s}]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
A216726
Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 2 and length 3 (n >= 3, 0 <= k <= n).
Original entry on oeis.org
11, 0, 0, 1, 6, 0, 0, 0, 0, 18, 5, 0, 0, 0, 1, 93, 18, 9, 0, 0, 0, 0, 600, 84, 28, 7, 0, 0, 0, 1, 4320, 512, 192, 0, 16, 0, 0, 0, 0, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321630, 34000, 5625, 1400, 200, 0, 25, 0, 0, 0, 0
Offset: 3
Triangle begins:
1 0 0 1
6 0 0 0 0
18 5 0 0 0 1
93 18 9 0 0 0 0
600 84 28 7 0 0 0 1
4320 512 192 0 16 0 0 0 0
35168 4122 810 156 54 9 0 0 0 1
321630 34000 5625 1400 200 0 25 0 0 0 0
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
Showing 1-5 of 5 results.
Comments