cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A216720 Duplicate of A174074.

Original entry on oeis.org

2, 6, 22, 109, 657, 4625, 37186, 336336, 3379058, 37328103
Offset: 3

Views

Author

Keywords

A174072 Number of permutations of length n with no consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 674, 4714, 37754, 340404, 3412176, 37631268, 452745470, 5900431012, 82802497682, 1244815252434, 19958707407096, 339960096280062, 6130407887839754, 116675071758609742, 2337186717333367706, 49153251967227002616, 1082860432463176004544
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Comments

Note for n<5 there are no such subsequences, so those values are trivially n!.

Examples

			For n=5 (0,2,4,1,3) is an example of a permutation with an i,i+2,i+4 triple. If we look at 0,2,4 as a block, then we have 3! ways to permute the triple with the remaining 1 & 3. Hence a(5) = 5! - 3! = 114.
		

Crossrefs

First column of A216716.

Programs

  • Maple
    b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
         `if`(x=0 or x-y<>2 or y-j<>2, b(s minus {j}, y, j), 0), j=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Apr 13 2021
  • Mathematica
    b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[
         If[x == 0 || x - y != 2 || y - j != 2,
         b[s ~Complement~ {j}, y, j], 0], {j, s}]];
    a[n_] := b[Range[n], 0, 0];
    Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)

Extensions

a(0)-a(4) and a(10)-a(11) moved from a duplicate entry based on the Dymacek et al. paper on Apr 13 2021
a(12)-a(22) from Alois P. Heinz, Apr 13 2021

A174073 Number of permutations of length n without modular consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 2, 3, 24, 100, 594, 4389, 35744, 325395, 3288600, 36489992, 441091944, 5770007009, 81213883898, 1223895060315, 19662509172096, 335472890422812, 6057979283966814, 115434096553014565, 2314691409661484600, 48723117262650147387, 1074208020519754180896, 24755214452825129257168
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Examples

			For example, a(5) does not count the permutation (0,4,1,3,2) since 4,1,3 is an arithmetic progression of 2 mod(5).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Column k=0 of A216724.

Extensions

a(11)-a(17) from Alois P. Heinz, Apr 13 2021
Terms a(18) onward from Max Alekseyev, Feb 04 2024

A174075 Number of circular permutations of length n without modular consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 6, 18, 93, 600, 4320, 35168, 321630, 3257109, 36199458, 438126986, 5736774869, 80808984725, 1218563192160, 19587031966352, 334329804180135, 6039535339644630, 115118210695441900, 2308967760171049528, 48613722701440862328, 1072008447320752890459
Offset: 3

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			Since a(5)=18, there are (5-1)!-18=4 circular permutations with modular consecutive triples i,i+2,i+4 in all circular permutations of length 5. These are exactly (0,2,4,1,3), (0,2,4,3,1), (0,4,2,1,3), and (0,3,2,4,1). Note some have more than one modular progression.
		

Crossrefs

Column 1 of A216726.

Programs

  • Mathematica
    f[i_,n_,k_]:=If[i==0 && k==0,1,If[i==n && n==k,1,Binomial[k-1,k-i]*Binomial[n-k-1,k-i-1] + 2*Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i-1]+Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i]]];
    w1[i_,n_,k_]:=If[n-2k+i<0,0,If[n-2k+i==0,1,(n-2k+i-1)!]];
    a[n_,k_]:=Sum[f[i,n,k]*w1[i,n,k],{i,0,k}];
    A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n,k],{k,1,n}];
    b[n_,k_]:=Sum[Sum[Sum[f[j,n/2,p]*f[i-j,n/2,k-p]*w2[i,j,n,k,p],{p,0,k}],{j,0,i}],{i,0,k-1}];
    w2[i_,j_,n_,k_,p_]:=If[n/2-2p+j<=0 || n/2-2(k-p)+(i-j)<=0,0,(n-2k+i-1)!];
    A216727[n_?EvenQ]:=(n-1)!+Sum[(-1)^k*b[n,k],{k,1,n}];
    A216727[n_?OddQ]:=A165962[n];
    Table[A216727[n],{n,3,23}] (* David Scambler, Sep 18 2012 *)

Formula

a(n) = A165962(n) for odd n.

A216719 Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 2 and length 3 (n >= 3, k >= 0).

Original entry on oeis.org

2, 6, 22, 2, 109, 10, 1, 657, 55, 7, 1, 4625, 356, 54, 4, 1, 37186, 2723, 362, 44, 4, 1, 336336, 23300, 2837, 368, 34, 4, 1, 3379058, 220997, 25408, 2967, 330, 35, 4, 1, 37328103, 2308564, 249736, 26964, 3100, 292, 36, 4, 1
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
         2
         6
        22       2
       109      10      1
       657      55      7     1
      4625     356     54     4    1
     37186    2723    362    44    4   1
    336336   23300   2837   368   34   4  1
   3379058  220997  25408  2967  330  35  4 1
  37328103 2308564 249736 26964 3100 292 36 4 1
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Columns 1..2 are A174074, A216721.
Row sums are A000142(n-1).

A174082 Number of circular permutations of (0,1,...,n-1) with no consecutive triples i,i+d,i+2d for all d>0.

Original entry on oeis.org

1, 1, 1, 5, 18, 91, 544, 3842, 30573, 277532, 2770405, 30591153, 366836571, 4783219673, 66906770461, 1006000805687
Offset: 1

Views

Author

Isaac Lambert, Mar 15 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			For n=4 there is only (4-1)!-a(4) = 1 circular permutation with a consecutive triple i,i+d,i+2d. It is (0,1,2,3).
		

Crossrefs

Extensions

a(1)-a(3) and a(10)-a(13) from Pontus von Brömssen, Feb 11 2024
a(14)-a(16) from Bert Dobbelaere, May 18 2025

A216721 Second column of A216719.

Original entry on oeis.org

2, 10, 55, 356, 2723, 23300, 220997, 2308564
Offset: 5

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Showing 1-7 of 7 results.