cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A216727 Duplicate of A174075.

Original entry on oeis.org

1, 6, 18, 93, 600, 4320, 35168, 321630, 3257109, 36199458, 438126986, 5736774869
Offset: 3

Views

Author

Keywords

A174072 Number of permutations of length n with no consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 674, 4714, 37754, 340404, 3412176, 37631268, 452745470, 5900431012, 82802497682, 1244815252434, 19958707407096, 339960096280062, 6130407887839754, 116675071758609742, 2337186717333367706, 49153251967227002616, 1082860432463176004544
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Comments

Note for n<5 there are no such subsequences, so those values are trivially n!.

Examples

			For n=5 (0,2,4,1,3) is an example of a permutation with an i,i+2,i+4 triple. If we look at 0,2,4 as a block, then we have 3! ways to permute the triple with the remaining 1 & 3. Hence a(5) = 5! - 3! = 114.
		

Crossrefs

First column of A216716.

Programs

  • Maple
    b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
         `if`(x=0 or x-y<>2 or y-j<>2, b(s minus {j}, y, j), 0), j=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Apr 13 2021
  • Mathematica
    b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[
         If[x == 0 || x - y != 2 || y - j != 2,
         b[s ~Complement~ {j}, y, j], 0], {j, s}]];
    a[n_] := b[Range[n], 0, 0];
    Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)

Extensions

a(0)-a(4) and a(10)-a(11) moved from a duplicate entry based on the Dymacek et al. paper on Apr 13 2021
a(12)-a(22) from Alois P. Heinz, Apr 13 2021

A174074 Number of circular permutations of length n without consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 1, 2, 6, 22, 109, 657, 4625, 37186, 336336, 3379058, 37328103, 449669577, 5866178493, 82387080624, 1239364493118, 19881771085788, 338797668091565, 6111688544942463, 116354993433563797, 2331395107113471188, 49042688584011866880, 1080639600739277669092, 24891049832682424745839
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			Since a(5)=22, there are (5-1)!-22=2 circular permutations with consecutive triples i,i+2,i+4 in all circular permutations of length 5. They are exactly (0,2,4,1,3) and (0,2,4,3,1).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Column 1 of A216719.

Extensions

a(10)-a(15) from Donovan Johnson, Sep 24 2010
a(0)-a(2) prepended and terms a(16) onward added by Max Alekseyev, Feb 04 2024

A174073 Number of permutations of length n without modular consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 2, 3, 24, 100, 594, 4389, 35744, 325395, 3288600, 36489992, 441091944, 5770007009, 81213883898, 1223895060315, 19662509172096, 335472890422812, 6057979283966814, 115434096553014565, 2314691409661484600, 48723117262650147387, 1074208020519754180896, 24755214452825129257168
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Examples

			For example, a(5) does not count the permutation (0,4,1,3,2) since 4,1,3 is an arithmetic progression of 2 mod(5).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Column k=0 of A216724.

Extensions

a(11)-a(17) from Alois P. Heinz, Apr 13 2021
Terms a(18) onward from Max Alekseyev, Feb 04 2024

A174083 Number of circular permutations of length n with no consecutive triples (i, i+d, i+2d) (mod n) for all d.

Original entry on oeis.org

4, 0, 40, 168, 1652, 9408, 117896, 1019260, 12737856, 140794368, 2072921376, 25990014896, 439692361160
Offset: 4

Views

Author

Isaac Lambert, Mar 15 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			For n=5 since a(5)=0 all (5-1)! = 24 circular permutations of length 5 have some consecutive triple (i, i+d, i+2d) (mod 5). For example, the permutation (0,4,2,1,3) has a triple (1,3,0) with d=2. This is clearly a special case.
		

Crossrefs

Extensions

a(10)-a(13) from Andrey Goder, Jul 03 2022
a(14)-a(16) from Bert Dobbelaere, May 18 2025

A216726 Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 2 and length 3 (n >= 3, 0 <= k <= n).

Original entry on oeis.org

11, 0, 0, 1, 6, 0, 0, 0, 0, 18, 5, 0, 0, 0, 1, 93, 18, 9, 0, 0, 0, 0, 600, 84, 28, 7, 0, 0, 0, 1, 4320, 512, 192, 0, 16, 0, 0, 0, 0, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321630, 34000, 5625, 1400, 200, 0, 25, 0, 0, 0, 0
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
1 0 0 1
6 0 0 0 0
18 5 0 0 0 1
93 18 9 0 0 0 0
600 84 28 7 0 0 0 1
4320 512 192 0 16 0 0 0 0
35168 4122 810 156 54 9 0 0 0 1
321630 34000 5625 1400 200 0 25 0 0 0 0
...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Showing 1-6 of 6 results.