cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A216717 Duplicate of A174072.

Original entry on oeis.org

1, 2, 6, 24, 114, 674, 4714, 37754, 340404, 3412176, 37631268
Offset: 1

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Crossrefs

Duplicate of A174072.

A174074 Number of circular permutations of length n without consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 1, 2, 6, 22, 109, 657, 4625, 37186, 336336, 3379058, 37328103, 449669577, 5866178493, 82387080624, 1239364493118, 19881771085788, 338797668091565, 6111688544942463, 116354993433563797, 2331395107113471188, 49042688584011866880, 1080639600739277669092, 24891049832682424745839
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			Since a(5)=22, there are (5-1)!-22=2 circular permutations with consecutive triples i,i+2,i+4 in all circular permutations of length 5. They are exactly (0,2,4,1,3) and (0,2,4,3,1).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Column 1 of A216719.

Extensions

a(10)-a(15) from Donovan Johnson, Sep 24 2010
a(0)-a(2) prepended and terms a(16) onward added by Max Alekseyev, Feb 04 2024

A212580 Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb where a

Original entry on oeis.org

1, 1, 2, 5, 20, 102, 626, 4458, 36144, 328794, 3316944, 36755520, 443828184, 5800823880, 81591320880, 1228888215960, 19733475278880, 336551479543440, 6075437671458000, 115733952138747600, 2320138519554562560, 48827468196234035280, 1076310620915575933440
Offset: 0

Views

Author

Tom Roby, May 21 2012

Keywords

Comments

Also the number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> bac where a
Also the number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> cba where a
Also the number of permutations of [n] avoiding consecutive triples j, j+1, j-1. a(4) = 20 = 4! - 4 counts all permutations of [4] except 1342, 2314, 3421, 4231. - Alois P. Heinz, Apr 14 2021

Examples

			From _Alois P. Heinz_, May 22 2012: (Start)
a(3) = 5: {123, 132}, {213}, {231}, {312}, {321}.
a(4) = 20: {1234, 1243, 1324}, {1342}, {1423}, {1432}, {2134}, {2143}, {2314}, {2341, 2431}, {2413}, {3124}, {3142}, {3214}, {3241}, {3412}, {3421}, {4123, 4132}, {4213}, {4231}, {4312}, {4321}. (End)
		

Crossrefs

Programs

  • Maple
    b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
          `if`(x=0 or x-y<>1 or j-x<>1, b(s minus {j}, y, j), 0), j=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Apr 14 2021
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [1$2, 2, 5, 20][n+1],
           n*a(n-1)+3*a(n-2)-(2*n-2)*a(n-3)+(n-2)*a(n-5))
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 14 2021
  • Mathematica
    a[n_] := a[n] = If[n < 5, {1, 1, 2, 5, 20}[[n+1]],
         n*a[n-1] + 3*a[n-2] - (2n - 2)*a[n-3] + (n-2)*a[n-5]];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^2))^k)) \\ Seiichi Manyama, Feb 20 2024

Formula

From Seiichi Manyama, Feb 20 2024: (Start)
G.f.: Sum_{k>=0} k! * ( x * (1-x^2) )^k.
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)! * binomial(n-2*k,k). (End)

Extensions

a(9)-a(22) from Alois P. Heinz, Apr 14 2021

A216716 Triangle read by rows: number of permutations of [1..n] with k progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 6, 674, 44, 2, 4714, 294, 30, 2, 37754, 2272, 276, 16, 2, 340404, 20006, 2236, 216, 16, 2, 3412176, 193896, 20354, 2200, 156, 16, 2, 37631268, 2056012, 206696, 20738, 1908, 160, 16, 2, 452745470, 23744752, 2273420, 215024, 21136, 1616, 164, 16, 2
Offset: 0

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
         1
         1
         2
         6 [this is for n=3]
        24
       114       6
       674      44      2
      4714     294     30     2
     37754    2272    276    16    2
    340404   20006   2236   216   16   2
   3412176  193896  20354  2200  156  16  2
  37631268 2056012 206696 20738 1908 160 16 2
  ...
		

Crossrefs

Row sums give A000142.
Column k=0 gives A174072.

Programs

  • Maple
    b:= proc(s, x, y) option remember; expand(`if`(s={}, 1, add(
         `if`(x>0 and x-y=2 and y-j=2, z, 1)*b(s minus {j}, y, j), j=s)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b({$1..n}, 0$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Apr 13 2021
  • Mathematica
    b[s_, x_, y_] := b[s, x, y] = Expand[If[s == {}, 1, Sum[
         If[x > 0 && x - y == 2 && y - j == 2, z, 1]*
         b[s ~Complement~ {j}, y, j], {j, s}]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0,
         Exponent[p, z]}]][b[Range[n], 0, 0]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Apr 13 2021

A174073 Number of permutations of length n without modular consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 2, 3, 24, 100, 594, 4389, 35744, 325395, 3288600, 36489992, 441091944, 5770007009, 81213883898, 1223895060315, 19662509172096, 335472890422812, 6057979283966814, 115434096553014565, 2314691409661484600, 48723117262650147387, 1074208020519754180896, 24755214452825129257168
Offset: 0

Author

Isaac Lambert, Mar 06 2010

Keywords

Examples

			For example, a(5) does not count the permutation (0,4,1,3,2) since 4,1,3 is an arithmetic progression of 2 mod(5).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Column k=0 of A216724.

Extensions

a(11)-a(17) from Alois P. Heinz, Apr 13 2021
Terms a(18) onward from Max Alekseyev, Feb 04 2024

A174075 Number of circular permutations of length n without modular consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 6, 18, 93, 600, 4320, 35168, 321630, 3257109, 36199458, 438126986, 5736774869, 80808984725, 1218563192160, 19587031966352, 334329804180135, 6039535339644630, 115118210695441900, 2308967760171049528, 48613722701440862328, 1072008447320752890459
Offset: 3

Author

Isaac Lambert, Mar 06 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			Since a(5)=18, there are (5-1)!-18=4 circular permutations with modular consecutive triples i,i+2,i+4 in all circular permutations of length 5. These are exactly (0,2,4,1,3), (0,2,4,3,1), (0,4,2,1,3), and (0,3,2,4,1). Note some have more than one modular progression.
		

Crossrefs

Column 1 of A216726.

Programs

  • Mathematica
    f[i_,n_,k_]:=If[i==0 && k==0,1,If[i==n && n==k,1,Binomial[k-1,k-i]*Binomial[n-k-1,k-i-1] + 2*Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i-1]+Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i]]];
    w1[i_,n_,k_]:=If[n-2k+i<0,0,If[n-2k+i==0,1,(n-2k+i-1)!]];
    a[n_,k_]:=Sum[f[i,n,k]*w1[i,n,k],{i,0,k}];
    A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n,k],{k,1,n}];
    b[n_,k_]:=Sum[Sum[Sum[f[j,n/2,p]*f[i-j,n/2,k-p]*w2[i,j,n,k,p],{p,0,k}],{j,0,i}],{i,0,k-1}];
    w2[i_,j_,n_,k_,p_]:=If[n/2-2p+j<=0 || n/2-2(k-p)+(i-j)<=0,0,(n-2k+i-1)!];
    A216727[n_?EvenQ]:=(n-1)!+Sum[(-1)^k*b[n,k],{k,1,n}];
    A216727[n_?OddQ]:=A165962[n];
    Table[A216727[n],{n,3,23}] (* David Scambler, Sep 18 2012 *)

Formula

a(n) = A165962(n) for odd n.

A216718 Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 1 and length 3 (n >= 3, k >= 0).

Original entry on oeis.org

1, 1, 1, 5, 0, 1, 20, 3, 0, 1, 102, 14, 3, 0, 1, 627, 72, 17, 3, 0, 1, 4461, 468, 87, 20, 3, 0, 1, 36155, 3453, 582, 103, 23, 3, 0, 1, 328849, 28782, 4395, 704, 120, 26, 3, 0, 1, 3317272, 267831, 37257, 5435, 834, 138, 29, 3, 0, 1
Offset: 2

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
        1;
        1,      1; [this is row n=3]
        5,      0,     1;
       20,      3,     0,    1;
      102,     14,     3,    0,   1;
      627,     72,    17,    3,   0,   1;
     4461,    468,    87,   20,   3,   0,  1;
    36155,   3453,   582,  103,  23,   3,  0, 1;
   328849,  28782,  4395,  704, 120,  26,  3, 0, 1;
  3317272, 267831, 37257, 5435, 834, 138, 29, 3, 0, 1;
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Extensions

a(2,0)=1 added by N. J. A. Sloane, Apr 16 2021

A174080 Number of permutations of length n with no consecutive triples i,i+d,i+2d for all d>0.

Original entry on oeis.org

1, 1, 2, 5, 21, 100, 597, 4113, 32842, 292379, 2925367, 31983248, 383514347, 4966286235, 69508102006, 1039315462467, 16627618496319, 282023014602100, 5075216962675445, 96263599713301975, 1925002914124917950
Offset: 0

Author

Isaac Lambert, Mar 15 2010

Keywords

Examples

			For n=4, there are 4!-a(4)=3 permutations with some consecutive triple i,i+d,i+2d. Note for n=4, only d=1 applies. Hence those three permutations are (0,1,2,3), (1,2,3,0), and (3,0,1,2). Since here only d=1, this is the same value of a(4) in A002628.
		

Programs

  • Maple
    b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
          `if`(x=0 or xy-j,
             b(s minus {j}, y, j), 0), j=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Apr 13 2021
  • Mathematica
    b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[If[x == 0 || x < y || x-y != y-j, b[s~Complement~{j}, y, j], 0], {j, s}]];
    a[n_] := b[Range[n], 0, 0];
    Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Sep 27 2022, after Alois P. Heinz *)

Extensions

a(0)-a(3) and a(10)-a(20) from Alois P. Heinz, Apr 13 2021
Showing 1-8 of 8 results.