A174072
Number of permutations of length n with no consecutive triples i,i+2,i+4.
Original entry on oeis.org
1, 1, 2, 6, 24, 114, 674, 4714, 37754, 340404, 3412176, 37631268, 452745470, 5900431012, 82802497682, 1244815252434, 19958707407096, 339960096280062, 6130407887839754, 116675071758609742, 2337186717333367706, 49153251967227002616, 1082860432463176004544
Offset: 0
For n=5 (0,2,4,1,3) is an example of a permutation with an i,i+2,i+4 triple. If we look at 0,2,4 as a block, then we have 3! ways to permute the triple with the remaining 1 & 3. Hence a(5) = 5! - 3! = 114.
-
b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
`if`(x=0 or x-y<>2 or y-j<>2, b(s minus {j}, y, j), 0), j=s))
end:
a:= n-> b({$1..n}, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Apr 13 2021
-
b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[
If[x == 0 || x - y != 2 || y - j != 2,
b[s ~Complement~ {j}, y, j], 0], {j, s}]];
a[n_] := b[Range[n], 0, 0];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
a(0)-a(4) and a(10)-a(11) moved from a duplicate entry based on the Dymacek et al. paper on Apr 13 2021
A216718
Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 1 and length 3 (n >= 3, k >= 0).
Original entry on oeis.org
1, 1, 1, 5, 0, 1, 20, 3, 0, 1, 102, 14, 3, 0, 1, 627, 72, 17, 3, 0, 1, 4461, 468, 87, 20, 3, 0, 1, 36155, 3453, 582, 103, 23, 3, 0, 1, 328849, 28782, 4395, 704, 120, 26, 3, 0, 1, 3317272, 267831, 37257, 5435, 834, 138, 29, 3, 0, 1
Offset: 2
Triangle begins:
1;
1, 1; [this is row n=3]
5, 0, 1;
20, 3, 0, 1;
102, 14, 3, 0, 1;
627, 72, 17, 3, 0, 1;
4461, 468, 87, 20, 3, 0, 1;
36155, 3453, 582, 103, 23, 3, 0, 1;
328849, 28782, 4395, 704, 120, 26, 3, 0, 1;
3317272, 267831, 37257, 5435, 834, 138, 29, 3, 0, 1;
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A216719
Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 2 and length 3 (n >= 3, k >= 0).
Original entry on oeis.org
2, 6, 22, 2, 109, 10, 1, 657, 55, 7, 1, 4625, 356, 54, 4, 1, 37186, 2723, 362, 44, 4, 1, 336336, 23300, 2837, 368, 34, 4, 1, 3379058, 220997, 25408, 2967, 330, 35, 4, 1, 37328103, 2308564, 249736, 26964, 3100, 292, 36, 4, 1
Offset: 3
Triangle begins:
2
6
22 2
109 10 1
657 55 7 1
4625 356 54 4 1
37186 2723 362 44 4 1
336336 23300 2837 368 34 4 1
3379058 220997 25408 2967 330 35 4 1
37328103 2308564 249736 26964 3100 292 36 4 1
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A216722
Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 1 and length 3 (n >= 3, 0 <= k <= n).
Original entry on oeis.org
1, 0, 0, 1, 5, 0, 0, 0, 1, 18, 5, 0, 0, 0, 1, 95, 18, 6, 0, 0, 0, 1, 600, 84, 28, 7, 0, 0, 0, 1, 4307, 568, 116, 40, 8, 0, 0, 0, 1, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1
Offset: 3
Triangle begins:
1, 0, 0, 1;
5, 0, 0, 0, 1;
18, 5, 0, 0, 0, 1;
95, 18, 6, 0, 0, 0, 1;
600, 84, 28, 7, 0, 0, 0, 1;
4307, 568, 116, 40, 8, 0, 0, 0, 1;
35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1;
321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1;
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A216724
Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).
Original entry on oeis.org
1, 1, 2, 3, 3, 24, 0, 100, 15, 0, 5, 594, 108, 18, 0, 4389, 504, 119, 21, 0, 7, 35744, 3520, 960, 64, 32, 0, 325395, 31077, 5238, 927, 207, 27, 0, 9, 3288600, 288300, 42050, 8800, 900, 100, 50, 0, 36489992, 2946141, 409827, 59785, 9174, 1518, 319, 33, 0, 11
Offset: 0
Triangle begins:
1
1
2
3 3
24 0
100 15 0 5
594 108 18 0
4389 504 119 21 0 7
35744 3520 960 64 32 0
325395 31077 5238 927 207 27 0 9
3288600 288300 42050 8800 900 100 50 0
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165.
-
b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add(
`if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)*
b(s minus {j}, y, j, n), j=s)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0,
iquo(n-1,2)*2-1)))(b({$1..n}, 0$2, n)):
seq(T(n), n=0..11); # Alois P. Heinz, Apr 13 2021
-
b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[
If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]*
b[s~Complement~{j}, y, j, n], {j, s}]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0,
Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
A216726
Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 2 and length 3 (n >= 3, 0 <= k <= n).
Original entry on oeis.org
11, 0, 0, 1, 6, 0, 0, 0, 0, 18, 5, 0, 0, 0, 1, 93, 18, 9, 0, 0, 0, 0, 600, 84, 28, 7, 0, 0, 0, 1, 4320, 512, 192, 0, 16, 0, 0, 0, 0, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321630, 34000, 5625, 1400, 200, 0, 25, 0, 0, 0, 0
Offset: 3
Triangle begins:
1 0 0 1
6 0 0 0 0
18 5 0 0 0 1
93 18 9 0 0 0 0
600 84 28 7 0 0 0 1
4320 512 192 0 16 0 0 0 0
35168 4122 810 156 54 9 0 0 0 1
321630 34000 5625 1400 200 0 25 0 0 0 0
...
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
A343535
Number T(n,k) of permutations of [n] having exactly k consecutive triples j, j+1, j-1; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 20, 4, 102, 18, 626, 92, 2, 4458, 564, 18, 36144, 4032, 144, 328794, 32898, 1182, 6, 3316944, 301248, 10512, 96, 36755520, 3057840, 102240, 1200, 443828184, 34073184, 1085904, 14304, 24, 5800823880, 413484240, 12538080, 174000, 600, 81591320880
Offset: 0
T(4,1) = 4: 1342, 2314, 3421, 4231.
Triangle T(n,k) begins:
1;
1;
2;
5, 1;
20, 4;
102, 18;
626, 92, 2;
4458, 564, 18;
36144, 4032, 144;
328794, 32898, 1182, 6;
3316944, 301248, 10512, 96;
36755520, 3057840, 102240, 1200;
443828184, 34073184, 1085904, 14304, 24;
5800823880, 413484240, 12538080, 174000, 600;
81591320880, 5428157760, 156587040, 2214720, 10800;
1228888215960, 76651163160, 2105035440, 29777520, 175800, 120;
...
-
b:= proc(s, l, t) option remember; `if`(s={}, 1, add((h->
expand(b(s minus {j}, j, `if`(h=1, 2, 1))*
`if`(t=2 and h=-2, x, 1)))(j-l), j=s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
b({$1..n}, -1, 1)):
seq(T(n), n=0..13);
-
b[s_, l_, t_] := b[s, l, t] = If[s == {}, 1, Sum[Function[h,
Expand[b[s ~Complement~ {j}, j, If[h == 1, 2, 1]]*
If[t == 2 && h == -2, x, 1]]][j - l], {j, s}]];
T[n_] := CoefficientList[b[Range[n], -1, 1], x];
T /@ Range[0, 13] // Flatten (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments