cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A212581 Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac where a

Original entry on oeis.org

1, 1, 2, 4, 17, 89, 556, 4011, 32843, 301210, 3059625, 34104275, 413919214, 5434093341, 76734218273, 1159776006262, 18681894258591, 319512224705645, 5782488507020050, 110407313135273127, 2218005876646727423, 46767874983437110354, 1032732727339665789981
Offset: 0

Views

Author

Tom Roby, May 21 2012

Keywords

Examples

			From _Alois P. Heinz_, May 22 2012: (Start)
a(3) = 4: {123, 132, 213}, {231}, {312}, {321}.
a(4) = 17: {1234, 1243, 1324, 2134}, {1342}, {1423}, {1432}, {2143}, {2314}, {2341, 2431, 3241}, {2413}, {3124}, {3142}, {3214}, {3412}, {3421}, {4123, 4132, 4213}, {4231}, {4312}, {4321}. (End)
		

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^2)^2/(1-x^3))^k)) \\ Seiichi Manyama, Feb 20 2024

Formula

G.f.: Sum_{k>=0} k! * ( x * (1-x^2)^2/(1-x^3) )^k. - Seiichi Manyama, Feb 20 2024

Extensions

a(9) from Alois P. Heinz, May 22 2012
a(10)-a(22) from Alois P. Heinz, Apr 14 2021

A212432 Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> cba where a

Original entry on oeis.org

1, 1, 2, 4, 16, 84, 536, 3912, 32256, 297072, 3026112, 33798720, 410826624, 5399704320, 76317546240, 1154312486400, 18604815528960, 318348065548800, 5763746405053440, 110086912964367360, 2212209395234979840, 46657233031296706560, 1030510550216174469120
Offset: 0

Views

Author

Tom Roby, Jun 21 2012

Keywords

Comments

Also number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> bac <--> cba where a < b < c.

Examples

			From _Alois P. Heinz_, Jun 22 2012: (Start)
a(3) = 4: {123, 132, 321}, {213}, {231}, {312}.
a(4) = 16: {1234, 1243, 1324, 1432, 3214}, {1342}, {1423}, {2134}, {2143}, {2314}, {2341, 2431, 4123, 4132, 4321}, {2413}, {3124}, {3142}, {3241}, {3412}, {3421}, {4213}, {4231}, {4312}.
a(5) = 84: {12345, 12354, 12435, 12543, 13245, 13254, 14325, 32145, 32154}, {12453}, ..., {53421}, {54213}, {54231}.
(End)
		

Crossrefs

Formula

From Seiichi Manyama, Feb 21 2024: (Start)
G.f.: Sum_{k>=0} k! * ( x * (1-2*x^2) )^k.
a(n) = Sum_{k=0..floor(n/3)} (-2)^k * (n-2*k)! * binomial(n-2*k,k). (End)

Extensions

a(9) from Alois P. Heinz, Jun 23 2012
a(10)-a(22) from Alois P. Heinz, Apr 14 2021

A370508 Expansion of Sum_{k>=0} k! * ( x * (1-x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 23, 116, 702, 4944, 39722, 358578, 3593664, 39595440, 475746474, 6190838544, 86740334160, 1301939398080, 20842001737224, 354469125185880, 6382790173842480, 121310821042966800, 2426863248540057480, 50975836645480342560, 1121691979824460425360
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*(n-3*k)!*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-3*k)! * binomial(n-3*k,k).

A370509 Expansion of Sum_{k>=0} k! * ( x * (1+x^2) )^k.

Original entry on oeis.org

1, 1, 2, 7, 28, 138, 818, 5658, 44784, 399366, 3962256, 43289760, 516432984, 6679346280, 93091875120, 1390851720840, 22175338353120, 375794883339120, 6745177713093840, 127830886641354960, 2550687440585679360, 53451172032327664560, 1173650135526055272960
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1+x^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)! * binomial(n-2*k,k).

A212433 Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac <--> cba, where a

Original entry on oeis.org

1, 1, 2, 3, 13, 71, 470, 3497, 29203, 271500, 2786711, 31322803, 382794114, 5054810585, 71735226535, 1088920362030, 17607174571553, 302143065676513, 5484510055766118, 104999034898520903, 2114467256458136473, 44682676397748896010, 988663144904696100347
Offset: 0

Views

Author

Tom Roby, Jun 21 2012

Keywords

Examples

			From _Alois P. Heinz_, Jun 23 2012: (Start)
a(3) = 3: {123, 132, 213, 321}, {231}, {312}.
a(4) = 13: {1234, 1243, 1324, 1432, 2134, 3214}, {1342}, {1423}, {2143}, {2314}, {2341, 2431, 3241, 4123, 4132, 4213, 4321}, {2413}, {3124}, {3142}, {3412}, {3421}, {4231}, {4312}.
a(5) = 71: {12345, 12354, 12435, 12543, 13245, 13254, 14325, 21345, 21354, 21435, 21543, 32145, 32154}, {12453}, ..., {53412}, {53421}, {54231}.
(End)
		

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*((1-x^2)^2/(1-x^3)-x^2))^k)) \\ Seiichi Manyama, Feb 25 2024

Formula

G.f.: Sum_{k>=0} k! * ( x * ((1-x^2)^2/(1-x^3) - x^2) )^k. - Seiichi Manyama, Feb 25 2024

Extensions

a(8)-a(9) from Alois P. Heinz, Jun 23 2012
a(10)-a(22) from Alois P. Heinz, Apr 14 2021

A343535 Number T(n,k) of permutations of [n] having exactly k consecutive triples j, j+1, j-1; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 20, 4, 102, 18, 626, 92, 2, 4458, 564, 18, 36144, 4032, 144, 328794, 32898, 1182, 6, 3316944, 301248, 10512, 96, 36755520, 3057840, 102240, 1200, 443828184, 34073184, 1085904, 14304, 24, 5800823880, 413484240, 12538080, 174000, 600, 81591320880
Offset: 0

Views

Author

Alois P. Heinz, Apr 18 2021

Keywords

Comments

Terms in column k are multiples of k!.

Examples

			T(4,1) = 4: 1342, 2314, 3421, 4231.
Triangle T(n,k) begins:
              1;
              1;
              2;
              5,           1;
             20,           4;
            102,          18;
            626,          92,          2;
           4458,         564,         18;
          36144,        4032,        144;
         328794,       32898,       1182,        6;
        3316944,      301248,      10512,       96;
       36755520,     3057840,     102240,     1200;
      443828184,    34073184,    1085904,    14304,     24;
     5800823880,   413484240,   12538080,   174000,    600;
    81591320880,  5428157760,  156587040,  2214720,  10800;
  1228888215960, 76651163160, 2105035440, 29777520, 175800, 120;
  ...
		

Crossrefs

Column k=0 gives A212580.
Row sums give A000142.

Programs

  • Maple
    b:= proc(s, l, t) option remember; `if`(s={}, 1, add((h->
          expand(b(s minus {j}, j, `if`(h=1, 2, 1))*
         `if`(t=2 and h=-2, x, 1)))(j-l), j=s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
                   b({$1..n}, -1, 1)):
    seq(T(n), n=0..13);
  • Mathematica
    b[s_, l_, t_] := b[s, l, t] = If[s == {}, 1, Sum[Function[h,
         Expand[b[s ~Complement~ {j}, j, If[h == 1, 2, 1]]*
         If[t == 2 && h == -2, x, 1]]][j - l], {j, s}]];
    T[n_] := CoefficientList[b[Range[n], -1, 1], x];
    T /@ Range[0, 13] // Flatten (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)

Formula

T(3n,n) = n!.

A370669 Expansion of Sum_{k>=0} k! * ( x/(1+x^2) )^k.

Original entry on oeis.org

1, 1, 2, 5, 20, 103, 630, 4475, 36232, 329341, 3320890, 36787889, 444125628, 5803850515, 81625106990, 1229298774647, 19738870726160, 336627732586105, 6076590994501938, 115752541255203869, 2320456607696181220, 48833227436258924671, 1076420625931284514342
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1+x^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*(n-2*k)!*binomial(n-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-2*k)! * binomial(n-k-1,k).
a(n) = n*a(n-1) + (n-4)*a(n-3) + a(n-4) for n > 4.
Showing 1-7 of 7 results.