A212581
Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac where a
Original entry on oeis.org
1, 1, 2, 4, 17, 89, 556, 4011, 32843, 301210, 3059625, 34104275, 413919214, 5434093341, 76734218273, 1159776006262, 18681894258591, 319512224705645, 5782488507020050, 110407313135273127, 2218005876646727423, 46767874983437110354, 1032732727339665789981
Offset: 0
From _Alois P. Heinz_, May 22 2012: (Start)
a(3) = 4: {123, 132, 213}, {231}, {312}, {321}.
a(4) = 17: {1234, 1243, 1324, 2134}, {1342}, {1423}, {1432}, {2143}, {2314}, {2341, 2431, 3241}, {2413}, {3124}, {3142}, {3214}, {3412}, {3421}, {4123, 4132, 4213}, {4231}, {4312}, {4321}. (End)
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^2)^2/(1-x^3))^k)) \\ Seiichi Manyama, Feb 20 2024
A212432
Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> cba where a
Original entry on oeis.org
1, 1, 2, 4, 16, 84, 536, 3912, 32256, 297072, 3026112, 33798720, 410826624, 5399704320, 76317546240, 1154312486400, 18604815528960, 318348065548800, 5763746405053440, 110086912964367360, 2212209395234979840, 46657233031296706560, 1030510550216174469120
Offset: 0
From _Alois P. Heinz_, Jun 22 2012: (Start)
a(3) = 4: {123, 132, 321}, {213}, {231}, {312}.
a(4) = 16: {1234, 1243, 1324, 1432, 3214}, {1342}, {1423}, {2134}, {2143}, {2314}, {2341, 2431, 4123, 4132, 4321}, {2413}, {3124}, {3142}, {3241}, {3412}, {3421}, {4213}, {4231}, {4312}.
a(5) = 84: {12345, 12354, 12435, 12543, 13245, 13254, 14325, 32145, 32154}, {12453}, ..., {53421}, {54213}, {54231}.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Anders Claesson, From Hertzsprung's problem to pattern-rewriting systems, University of Iceland (2020).
- S. Linton, J. Propp, T. Roby, and J. West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, arXiv:1111.3920, 2011 [math.CO], J. Int. Seq. 15 (2012) #12.9.1
A370508
Expansion of Sum_{k>=0} k! * ( x * (1-x^3) )^k.
Original entry on oeis.org
1, 1, 2, 6, 23, 116, 702, 4944, 39722, 358578, 3593664, 39595440, 475746474, 6190838544, 86740334160, 1301939398080, 20842001737224, 354469125185880, 6382790173842480, 121310821042966800, 2426863248540057480, 50975836645480342560, 1121691979824460425360
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^3))^k))
-
a(n) = sum(k=0, n\4, (-1)^k*(n-3*k)!*binomial(n-3*k, k));
A370509
Expansion of Sum_{k>=0} k! * ( x * (1+x^2) )^k.
Original entry on oeis.org
1, 1, 2, 7, 28, 138, 818, 5658, 44784, 399366, 3962256, 43289760, 516432984, 6679346280, 93091875120, 1390851720840, 22175338353120, 375794883339120, 6745177713093840, 127830886641354960, 2550687440585679360, 53451172032327664560, 1173650135526055272960
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1+x^2))^k))
-
a(n) = sum(k=0, n\3, (n-2*k)!*binomial(n-2*k, k));
A212433
Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac <--> cba, where a
Original entry on oeis.org
1, 1, 2, 3, 13, 71, 470, 3497, 29203, 271500, 2786711, 31322803, 382794114, 5054810585, 71735226535, 1088920362030, 17607174571553, 302143065676513, 5484510055766118, 104999034898520903, 2114467256458136473, 44682676397748896010, 988663144904696100347
Offset: 0
From _Alois P. Heinz_, Jun 23 2012: (Start)
a(3) = 3: {123, 132, 213, 321}, {231}, {312}.
a(4) = 13: {1234, 1243, 1324, 1432, 2134, 3214}, {1342}, {1423}, {2143}, {2314}, {2341, 2431, 3241, 4123, 4132, 4213, 4321}, {2413}, {3124}, {3142}, {3412}, {3421}, {4231}, {4312}.
a(5) = 71: {12345, 12354, 12435, 12543, 13245, 13254, 14325, 21345, 21354, 21435, 21543, 32145, 32154}, {12453}, ..., {53412}, {53421}, {54231}.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Anders Claesson, From Hertzsprung's problem to pattern-rewriting systems, University of Iceland (2020).
- S. Linton, J. Propp, T. Roby, and J. West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, arXiv:1111.3920, 2011 [math.CO]
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*((1-x^2)^2/(1-x^3)-x^2))^k)) \\ Seiichi Manyama, Feb 25 2024
A343535
Number T(n,k) of permutations of [n] having exactly k consecutive triples j, j+1, j-1; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 20, 4, 102, 18, 626, 92, 2, 4458, 564, 18, 36144, 4032, 144, 328794, 32898, 1182, 6, 3316944, 301248, 10512, 96, 36755520, 3057840, 102240, 1200, 443828184, 34073184, 1085904, 14304, 24, 5800823880, 413484240, 12538080, 174000, 600, 81591320880
Offset: 0
T(4,1) = 4: 1342, 2314, 3421, 4231.
Triangle T(n,k) begins:
1;
1;
2;
5, 1;
20, 4;
102, 18;
626, 92, 2;
4458, 564, 18;
36144, 4032, 144;
328794, 32898, 1182, 6;
3316944, 301248, 10512, 96;
36755520, 3057840, 102240, 1200;
443828184, 34073184, 1085904, 14304, 24;
5800823880, 413484240, 12538080, 174000, 600;
81591320880, 5428157760, 156587040, 2214720, 10800;
1228888215960, 76651163160, 2105035440, 29777520, 175800, 120;
...
-
b:= proc(s, l, t) option remember; `if`(s={}, 1, add((h->
expand(b(s minus {j}, j, `if`(h=1, 2, 1))*
`if`(t=2 and h=-2, x, 1)))(j-l), j=s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
b({$1..n}, -1, 1)):
seq(T(n), n=0..13);
-
b[s_, l_, t_] := b[s, l, t] = If[s == {}, 1, Sum[Function[h,
Expand[b[s ~Complement~ {j}, j, If[h == 1, 2, 1]]*
If[t == 2 && h == -2, x, 1]]][j - l], {j, s}]];
T[n_] := CoefficientList[b[Range[n], -1, 1], x];
T /@ Range[0, 13] // Flatten (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)
A370669
Expansion of Sum_{k>=0} k! * ( x/(1+x^2) )^k.
Original entry on oeis.org
1, 1, 2, 5, 20, 103, 630, 4475, 36232, 329341, 3320890, 36787889, 444125628, 5803850515, 81625106990, 1229298774647, 19738870726160, 336627732586105, 6076590994501938, 115752541255203869, 2320456607696181220, 48833227436258924671, 1076420625931284514342
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1+x^2))^k))
-
a(n) = sum(k=0, n\2, (-1)^k*(n-2*k)!*binomial(n-k-1, k));
Showing 1-7 of 7 results.
Comments