cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051081 Primes p such that x^24 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 881, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1307, 1427, 1451, 1459, 1481
Offset: 1

Views

Author

Keywords

Comments

Complement of A216743 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^24 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Maple
    isA051081 := proc(p) local x; for x from 0 to p-1 do if (x^24 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051081(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Oct 15 2008
  • Mathematica
    ok[p_]:= Reduce[Mod[x^24 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from R. J. Mathar, Oct 15 2008

A216769 Primes p such that x^48 = -2 has no solution mod p.

Original entry on oeis.org

5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 139, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233, 239, 241, 263, 269, 271, 277, 293, 311, 313, 317, 331, 337, 349, 353, 359
Offset: 1

Views

Author

Vincenzo Librandi, Sep 16 2012

Keywords

Comments

Complement of A051093 relative to A000040.
Starts to differ from A216743 at index n=121 (presence/absence of 881). - R. J. Mathar, Jul 20 2023

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(600) | not exists{x: x in ResidueClassRing(p) | x^48 eq -2}];
  • Mathematica
    ok[p_] := Reduce[Mod[x^48 + 2, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok]
Showing 1-2 of 2 results.