A216757 a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).
0, -3, -15, -63, -252, -990, -3861, -15012, -58293, -226233, -877797, -3405564, -13211910, -51254775, -198838152, -771371667, -2992450959, -11608875207, -45035307612, -174709321686, -677764787229, -2629310751036, -10200109386213, -39570153919641, -153507871295037
Offset: 1
Examples
We have s(1)^5 - s(2)^5 + s(4)^5 = 5*(s(1)^3 - s(2)^3 + s(4)^3) = -15*sqrt(3), s(1)^9 - s(2)^9 + s(4)^9 = 4*(s(1)^7 - s(2)^7 + s(4)^7) = -252*sqrt(3), 39*(s(1)^11 - s(2)^11 + s(4)^11) = 10*(s(1)^13 - s(2)^13 + s(4)^13) = -38610*sqrt(3), s(1)^7 - s(2)^7 + s(4)^7 = 4*(s(1)^5 - s(2)^5 + s(4)^5) + (s(1)^3 - s(2)^3 + s(4)^3) = -63*sqrt(3), and s(1)^15 - s(2)^15 + s(4)^15 = 1000*(s(1)^5 - s(2)^5 + s(4)^5) + 4*(s(1)^3 - s(2)^3 + s(4)^3) = -15012*sqrt(3). We note that a(6) = 3*(a(5) + a(4) + a(3)).
References
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-9,3).
Crossrefs
Cf. A215634.
Programs
-
Mathematica
LinearRecurrence[{6,-9,3}, {0,-3,-15}, 30] CoefficientList[Series[-3*x^2*(1 - x)/(1 - 6*x + 9*x^2 - 3*x^3), {x, 0,5 0}], x] (* G. C. Greubel, Apr 17 2017 *)
-
PARI
concat(0,Vec(-3*(1-x)/(1-6*x+9*x^2-3*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
Formula
a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).
G.f.: -3*x^2*(1 - x)/(1 - 6*x + 9*x^2 - 3*x^3).
a(n) = Sum_{k=0..n} 3*(-1)^k*(binomial(2*n-1, n+9*k+7) - binomial(2*n-1, n+9*k+1)). - Greg Dresden, Jan 28 2023
Comments