cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216782 Numbers such that numerator(sigma(n)/n) is even and denominator(sigma(n)/n) is odd.

Original entry on oeis.org

3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 21, 22, 23, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102
Offset: 1

Views

Author

Michel Marcus, Sep 16 2012

Keywords

Comments

a(n) contains odd primes (A065091), odd squarefree semiprimes (A046388), perfect numbers (A000396), and 2n-multiperfect (A027687, A046061).

Examples

			sigma(3)/3 = 4/3 (even/odd).
		

Crossrefs

Cf. A216780, A216781, A324903 (characteristic function).
Subsequences: A000396, A027687, A043305 (without its initial 1), A046061, A046388, A065091, A336702 (without its initial 1).

Programs

  • Mathematica
    Select[Range[1000], EvenQ[Numerator[DivisorSigma[1, #] / # ]] && OddQ[Denominator[DivisorSigma[1, #]/#]]&] (* Vincenzo Librandi, Jun 24 2014 *)
    nedoQ[n_]:=Module[{ds=DivisorSigma[1,n]/n},EvenQ[Numerator[ds]]&&OddQ[ Denominator[ ds]]]; Select[Range[200],nedoQ] (* Harvey P. Dale, Feb 28 2015 *)
  • PARI
    eoab(n) = {for (i=1, n, ab = sigma(i)/i; if ((numerator(ab) % 2 == 0) && (denominator(ab) % 2 == 1), print1(i, ", ")););}