A216963 Triangle read by rows, arising in enumeration of permutations by cyclic peaks, cycles and fixed points.
1, 0, 1, 1, 1, 4, 5, 11, 28, 5, 41, 153, 71, 162, 872, 759, 61, 715, 5191, 7262, 1665, 3425, 32398, 66510, 29778, 1385, 17722, 211937, 601080, 443231, 60991, 98253, 1451599, 5446847, 5994473, 1642877, 50521, 580317, 10393114, 49940615, 76889330, 35162440, 3249025
Offset: 0
Examples
Triangle begins: : 1; : 0; : 1; : 1, 1; : 4, 5; : 11, 28, 5; : 41, 153, 71; : 162, 872, 759, 61; : 715, 5191, 7262, 1665; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Shi-Mei Ma and Chak-On Chow, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
Programs
-
Maple
p:= proc(n) option remember; expand(`if`(n<4, [1, 0, x, x*(1+q)][n+1], (n-1)*q*p(n-1)+ 2*q*(1-q)*diff(p(n-1), q)+x*(1-q)* diff(p(n-1), x)+(n-1)*x*p(n-2))) end: T:= n-> (t-> seq(coeff(t, q, i), i=0.. max(0, degree(t))))(subs(x=1, p(n))): seq(T(n), n=0..15); # Alois P. Heinz, Apr 13 2017
-
Mathematica
p[0] = 1; p[1] = 0; p[2] = x; p[3] = (1 + q) x; p[n_] := p[n] = Expand[(n - 1) q p[n - 1] + 2 q (1 - q) D[p[n - 1], q] + x (1 - q) D[p[n - 1], x] + (n - 1) x p[n - 2]]; T[n_] := CoefficientList[p[n] /. x -> 1 , q]; T[1] = {0}; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Nov 08 2017 *)
-
PARI
tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = (1+q)*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q,q) + x*(1-q)*deriv(Q,x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP;);} \\ Michel Marcus, Feb 09 2013
Extensions
More terms from Michel Marcus, Feb 09 2013
One row for T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017
Comments