cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A216995 Multiples of 11 whose digit sum is a multiple of 11.

Original entry on oeis.org

209, 308, 407, 506, 605, 704, 803, 902, 2090, 2299, 2398, 2497, 2596, 2695, 2794, 2893, 2992, 3080, 3289, 3388, 3487, 3586, 3685, 3784, 3883, 3982, 4070, 4279, 4378, 4477, 4576, 4675, 4774, 4873, 4972, 5060, 5269, 5368, 5467, 5566, 5665, 5764, 5863, 5962, 6050
Offset: 1

Views

Author

Jon Perry, Sep 22 2012

Keywords

Comments

Nothing between 1000 and 2000.
Also, there are no a(n) from 10902 to 12198 (this interval contains 117 multiples of 11). [Bruno Berselli, Oct 26 2012]

Examples

			3487 = 11*317 and 3+4+8+7 = 22 = 11*2.
		

Crossrefs

Cf. A008593 (multiples of 11), A166311 (digit sum multiple of 11).

Programs

  • JavaScript
    function sumarray(arr) {
    t=0;
    for (i=0;i
    				
  • Mathematica
    Select[11*Range[1000], Mod[Total[IntegerDigits[#]], 11] == 0 &] (* T. D. Noe, Sep 24 2012 *)
  • Python
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return n%11 == 0 and sd(n)%11 == 0
    print(list(filter(ok, range(1, 6051)))) # Michael S. Branicky, Jul 11 2021

A216994 Multiples of 7 such that the digit sum is divisible by 7.

Original entry on oeis.org

7, 70, 77, 133, 266, 322, 329, 392, 399, 455, 511, 518, 581, 588, 644, 700, 707, 770, 777, 833, 966, 1015, 1085, 1141, 1148, 1204, 1274, 1330, 1337, 1463, 1526, 1596, 1652, 1659, 1715, 1785, 1841, 1848, 1904, 1974, 2023, 2093, 2156, 2212, 2219, 2282, 2289
Offset: 1

Views

Author

Jon Perry, Sep 22 2012

Keywords

Comments

Conjecture: Every century has a representation in the sequence.

Examples

			1085 = 7*155 and 1 + 0 + 8 + 5 = 14 = 7*2.
		

Crossrefs

Programs

  • JavaScript
    function sumarray(arr) {
    t = 0;
    for (i = 0; i < arr.length; i++) t += arr[i];
    return t;
    }
    for(s = 7; s < 3000; s += 7) {
    a = new Array();
    x = s.toString();
    for (j = 0; j < x.length; j++) a[j] = Number(x.charAt(j));
    if (sumarray(a) % 7 == 0) document.write(s + ",");
    }
  • Mathematica
    Select[7*Range[400], Mod[Total[IntegerDigits[#]], 7] == 0 &] (* T. D. Noe, Sep 24 2012 *)

A216996 Numbers n such that the digit sum of n*7 is a multiple of 7.

Original entry on oeis.org

1, 10, 11, 19, 38, 46, 47, 56, 57, 65, 73, 74, 83, 84, 92, 100, 101, 110, 111, 119, 138, 145, 155, 163, 164, 172, 182, 190, 191, 209, 218, 228, 236, 237, 245, 255, 263, 264, 272, 282, 289, 299, 308, 316, 317, 326, 327, 335, 343, 344, 353, 354, 362, 380, 381
Offset: 1

Views

Author

Jon Perry, Sep 22 2012

Keywords

Comments

If n is in the sequence, so are 10*n and 10*n+1. - Robert Israel, Mar 08 2018

Examples

			7*19 = 133 and 1+3+3=7.
		

Crossrefs

Programs

  • JavaScript
    function sumarray(arr) {
    t=0;
    for (i=0;i
    				
  • Maple
    filter:= n -> convert(convert(7*n,base,10),`+`) mod 7 = 0:
    select(filter, [$1..1000]); # Robert Israel, Mar 08 2018
  • Mathematica
    Select[Range[500], Mod[Total[IntegerDigits[7*#]], 7] == 0 &] (* T. D. Noe, Sep 24 2012 *)

A216998 Digit sum of n*7 mod 7.

Original entry on oeis.org

0, 5, 3, 3, 1, 6, 6, 4, 2, 0, 0, 5, 3, 3, 6, 4, 4, 2, 0, 5, 5, 3, 1, 1, 6, 4, 4, 2, 5, 3, 3, 1, 6, 6, 4, 2, 2, 0, 5, 3, 3, 1, 4, 4, 2, 0, 0, 5, 3, 1, 1, 6, 4, 4, 2, 0, 0, 3, 1, 6, 6, 4, 2, 2, 0, 5, 5, 3, 1, 6, 6, 2, 0, 0, 5, 3, 3, 1, 6, 4, 4, 2, 0, 0, 5, 1, 1, 6
Offset: 1

Views

Author

Jon Perry, Sep 22 2012

Keywords

Comments

Zeros correspond to A216994.

Examples

			a(8) corresponds to the digit sum of 56, which is 11, mod 7, so a(8)=4.
		

Crossrefs

Programs

  • JavaScript
    function sumarray(arr) {
    t=0;
    for (i=0;i
    				
  • Mathematica
    Table[Mod[Total[IntegerDigits[7*n]], 7], {n, 100}] (* T. D. Noe, Sep 24 2012 *)

A217009 Multiples of 7 in base 8.

Original entry on oeis.org

7, 16, 25, 34, 43, 52, 61, 70, 77, 106, 115, 124, 133, 142, 151, 160, 167, 176, 205, 214, 223, 232, 241, 250, 257, 266, 275, 304, 313, 322, 331, 340, 347, 356, 365, 374, 403, 412, 421, 430, 437, 446, 455, 464, 473, 502, 511, 520, 527, 536, 545, 554, 563
Offset: 1

Views

Author

Jon Perry, Sep 23 2012

Keywords

Comments

Digit sum is always divisible by 7.
Reinterpreting this sequence in base 10, these are numbers of the form 9n + 7 but with all numbers containing 8s and/or 9s removed. - Alonso del Arte, Sep 23 2012

Examples

			a(10) = 106 because 7 * 10 = 70, or 1 * 8^2 + 0 * 8^1 + 6 * 8^0 = 64 + 6 = 106_8.
		

Crossrefs

Programs

  • JavaScript
    k = 7;
    for (i = 1; i <= 200; i++) {
    x = i * k;
    document.write(x.toString(k + 1) + ", ");
    }
  • Mathematica
    Table[BaseForm[7*n, 8], {n, 100}] (* Alonso del Arte, Sep 23 2012 *)
    Select[9*Range[0, 99] + 7, DigitCount[#, 10, 8] == 0 && DigitCount[#, 10, 9] == 0 &] (* Alonso del Arte, Sep 23 2012 *)
    Table[FromDigits[IntegerDigits[7*n, 8]], {n, 100}] (* T. D. Noe, Sep 24 2012 *)

Formula

a(n) = A007094(A008589(n)). -

A218292 Multiples of 10 such that the sum of their digits is also a multiple of 10.

Original entry on oeis.org

190, 280, 370, 460, 550, 640, 730, 820, 910, 1090, 1180, 1270, 1360, 1450, 1540, 1630, 1720, 1810, 1900, 2080, 2170, 2260, 2350, 2440, 2530, 2620, 2710, 2800, 2990, 3070, 3160, 3250, 3340, 3430, 3520, 3610, 3700, 3890, 3980, 4060, 4150, 4240, 4330, 4420, 4510
Offset: 1

Views

Author

Bruno Berselli, Oct 25 2012

Keywords

Examples

			a(38) = 3890 is a multiple of 10, and 3+8+9+0=20 is also a multiple of 10.
		

Crossrefs

Cf. multiples of k with digit sum divisible by k: A008585 (k=3), A008591 (k=9), A062753 (k=4), A179082 (k=2), A216994 (k=7), A216995 (k=11), A216997 (k=8), A218290 (k=5), A218291 (k=6).

Programs

  • Magma
    [n: n in [10..4600 by 10] | IsZero(&+Intseq(n) mod 10)];
  • Mathematica
    Select[ Range[10, 4600, 10], Mod[ Total[ IntegerDigits[#]], 10] == 0 &] (* Jean-François Alcover, Oct 26 2012 *)

Formula

a(n) = 10*A094677(n).

A218290 Multiples of 5 such that the sum of their digits is also a multiple of 5.

Original entry on oeis.org

5, 50, 55, 140, 145, 190, 195, 230, 235, 280, 285, 320, 325, 370, 375, 410, 415, 460, 465, 500, 505, 550, 555, 640, 645, 690, 695, 730, 735, 780, 785, 820, 825, 870, 875, 910, 915, 960, 965, 1040, 1045, 1090, 1095, 1130, 1135, 1180, 1185, 1220, 1225, 1270
Offset: 1

Views

Author

Bruno Berselli, Oct 25 2012

Keywords

Examples

			145 is a multiple of 5, and its digits, 1, 4, 5, add up to 10, which is also a multiple of 5. [_Alonso del Arte_, Oct 27 2012]
		

Crossrefs

Cf. multiples of k with digit sum divisible by k: A008585 (k = 3), A008591 (k = 9), A062753 (k = 4), A179082 (k = 2), A216994 (k = 7), A216995 (k = 11), A216997 (k = 8), A218291 (k = 6), A218292 (k = 10).

Programs

  • Magma
    [n: n in [5..1300 by 5] | IsZero(&+Intseq(n) mod 5)];
  • Mathematica
    Select[ Range[5, 1300, 5], Mod[ Total[ IntegerDigits[#]], 5] == 0 &] (* Jean-François Alcover, Oct 26 2012 *)

A218291 Multiples of 6 such that the sum of their digits is also a multiple of 6.

Original entry on oeis.org

6, 24, 42, 48, 60, 66, 84, 114, 132, 138, 150, 156, 174, 192, 198, 204, 222, 228, 240, 246, 264, 282, 288, 312, 318, 330, 336, 354, 372, 378, 390, 396, 402, 408, 420, 426, 444, 462, 468, 480, 486, 510, 516, 534, 552, 558, 570, 576, 594, 600, 606, 624, 642, 648
Offset: 1

Views

Author

Bruno Berselli, Oct 25 2012

Keywords

Examples

			48 is a multiple of 6, and 4+8=12 is also a multiple of 6.
		

Crossrefs

Subsequence of A179082.
Cf. multiples of k with digit sum divisible by k: A008585 (k=3), A008591 (k=9), A062753 (k=4), A179082 (k=2), A216994 (k=7), A216995 (k=11), A216997 (k=8), A218290 (k=5), A218292 (k=10).

Programs

  • Magma
    [n: n in [6..700 by 6] | IsZero(&+Intseq(n) mod 6)];
  • Mathematica
    Select[ Range[6, 700, 6], Mod[ Total[ IntegerDigits[#]], 6] == 0 &] (* Jean-François Alcover, Oct 26 2012 *)
Showing 1-8 of 8 results.