cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A102910 Primes of the form 5^k + 8.

Original entry on oeis.org

13, 2524354896707237777317531408904915934954260592348873615264892578133
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2005

Keywords

Comments

The next term, 5^(335) + 8, is too large to include.

Crossrefs

Cf. A217133 (values of k).

Programs

  • Maple
    a:=proc(n) if isprime(5^n+8)=true then [n,5^n+8] else fi end: seq(a(n),n=1..400); # yields also the value of n
  • Mathematica
    a = Delete[Union[Flatten[Table[If [PrimeQ[5^n + 7 + 1] == True, 5^n + 7 + 1, 0], {n, 1, 400}]]], 1]

Extensions

Edited by N. J. A. Sloane, Apr 16 2006
Verified by Don Reble, Apr 25 2006

A378815 Numbers k such that 5^k + 64 is prime.

Original entry on oeis.org

2, 58, 170, 1402, 1774, 10802, 86342
Offset: 1

Views

Author

Robert Price, Dec 08 2024

Keywords

Examples

			2 is a term because 5^2 + 64 = 89 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+64)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+64]&]

Extensions

a(6) from Michael S. Branicky, Dec 17 2024
a(7) from Michael S. Branicky, Dec 23 2024

A378832 Numbers k such that 5^k + 68 is prime.

Original entry on oeis.org

1, 3, 7, 133, 331, 453, 10365
Offset: 1

Views

Author

Robert Price, Dec 08 2024

Keywords

Comments

a(8) > 22000. - Matthew L. LaSelle, Feb 25 2025
a(8) > 100000. - Michael S. Branicky, Mar 28 2025

Examples

			3 is a term because 5^3 + 68 = 193 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+68)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+68]&]

Extensions

a(7) from Michael S. Branicky, Dec 17 2024

A378866 Numbers k such that 5^k + 72 is prime.

Original entry on oeis.org

0, 2, 3, 118, 498, 1023, 4262, 6094, 6382, 26334, 56062
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Examples

			3 is a term because 5^3 + 72 = 197 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+72)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+72]&]

Extensions

a(8)-a(11) from Michael S. Branicky, Dec 19 2024

A378867 Numbers k such that 5^k + 86 is prime.

Original entry on oeis.org

3, 27, 179, 507, 4671, 4923, 5871, 7571, 19551, 19955
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Comments

a(11) > 10^5. - Michael S. Branicky, Dec 22 2024

Examples

			3 is a term because 5^3 + 86 = 211 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+86)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+86]&]

Extensions

a(5)-a(10) from Vincenzo Librandi, Dec 17 2024
Showing 1-5 of 5 results.