A102910
Primes of the form 5^k + 8.
Original entry on oeis.org
13, 2524354896707237777317531408904915934954260592348873615264892578133
Offset: 1
-
a:=proc(n) if isprime(5^n+8)=true then [n,5^n+8] else fi end: seq(a(n),n=1..400); # yields also the value of n
-
a = Delete[Union[Flatten[Table[If [PrimeQ[5^n + 7 + 1] == True, 5^n + 7 + 1, 0], {n, 1, 400}]]], 1]
A378815
Numbers k such that 5^k + 64 is prime.
Original entry on oeis.org
2, 58, 170, 1402, 1774, 10802, 86342
Offset: 1
2 is a term because 5^2 + 64 = 89 is prime.
-
[k: k in [0..1000] |IsPrime (5^k+64)];
-
Select[Range[0,5000],PrimeQ[5^#+64]&]
A378832
Numbers k such that 5^k + 68 is prime.
Original entry on oeis.org
1, 3, 7, 133, 331, 453, 10365
Offset: 1
3 is a term because 5^3 + 68 = 193 is prime.
-
[k: k in [0..1000] |IsPrime (5^k+68)];
-
Select[Range[0,5000],PrimeQ[5^#+68]&]
A378866
Numbers k such that 5^k + 72 is prime.
Original entry on oeis.org
0, 2, 3, 118, 498, 1023, 4262, 6094, 6382, 26334, 56062
Offset: 1
3 is a term because 5^3 + 72 = 197 is prime.
-
[k: k in [0..1000] |IsPrime (5^k+72)];
-
Select[Range[0,5000],PrimeQ[5^#+72]&]
A378867
Numbers k such that 5^k + 86 is prime.
Original entry on oeis.org
3, 27, 179, 507, 4671, 4923, 5871, 7571, 19551, 19955
Offset: 1
3 is a term because 5^3 + 86 = 211 is prime.
-
[k: k in [0..1000] |IsPrime (5^k+86)];
-
Select[Range[0,5000],PrimeQ[5^#+86]&]
Showing 1-5 of 5 results.
Comments