cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217138 G.f. A(x) satisfies A(x) = 1 + x*A(x)^2*(A(x) + A(-x))/2.

Original entry on oeis.org

1, 1, 2, 7, 22, 94, 340, 1579, 6118, 29746, 120060, 600934, 2492028, 12725756, 53798888, 278786739, 1195684230, 6265816042, 27175425004, 143671870034, 628705751828, 3347680236132, 14756641134872, 79039468217086, 350529497005532, 1886818634445044, 8410852483002200
Offset: 0

Views

Author

Paul D. Hanna, Sep 27 2012

Keywords

Comments

Compare to: G(x) = 1 + x*G(x)*(G(x) + G(-x))/2, which is the g.f. of A047749.
The radius of convergence r of g.f. A(x) is
r = 0.192450089729875254836382926833985818549200... with
A(r) = (3 - sqrt(9-6*sqrt(2)))/sqrt(2) = 1.614014407382354328773...
A(-r) = (sqrt(9+6*sqrt(2)) - 3)/sqrt(2) = 0.835475335400823769423...
where y = A(r) and y = A(-r) solves y^4 = 18*(1-y)^2.
In closed form, r = 1/(3*sqrt(3)). - Vaclav Kotesovec, Feb 17 2014

Examples

			A(x) = 1 + x + 2*x^2 + 7*x^3 + 22*x^4 + 94*x^5 + 340*x^6 + 1579*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 62*x^4 + 260*x^5 + 1005*x^6 + 4522*x^7 +...
(A(x) + A(-x))/2 = 1 + 2*x^2 + 22*x^4 + 340*x^6 + 6118*x^8 +...
		

Crossrefs

Cf. A047749.

Programs

  • PARI
    {a(n)=local(A=1+O(x^(n+1))); for(i=0, n, A=1+x*A^2*(A+subst(A, x, -x))/2); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: 2*(A(x)-1)^3 + x*(A(x)-1)*(2-A(x))*A(x)^3 - x^2*A(x)^6 = 0.
The formal inverse of g.f. A(x) is (x-1)*(2-x + sqrt(x^2 + 4*x - 4))/(2*x^3).
Recurrence: (n-1)*n*(n+1)*(2*n-1)*(2*n+1)*(198*n^5 - 1890*n^4 + 6915*n^3 - 12015*n^2 + 9832*n - 3060)*a(n) = 30*(n-1)*n*(2*n - 1)*(3*n - 7)*(36*n^4 - 246*n^3 + 567*n^2 - 468*n + 55)*a(n-1) + 3*(n-1)*(14256*n^9 - 193104*n^8 + 1111626*n^7 - 3526794*n^6 + 6652659*n^5 - 7420161*n^4 + 4436059*n^3 - 971921*n^2 - 90480*n - 23100)*a(n-2) - 90*(2*n - 1)*(3*n - 8)*(3*n - 7)*(3*n - 4)*(36*n^4 - 246*n^3 + 567*n^2 - 468*n + 55)*a(n-3) - 36*(n-3)*(3*n - 11)*(3*n - 10)*(3*n - 8)*(3*n - 7)*(198*n^5 - 900*n^4 + 1335*n^3 - 630*n^2 - 23*n - 20)*a(n-4). - Vaclav Kotesovec, Feb 17 2014
a(n) ~ (1+2*sqrt(2)-sqrt(3) + (-1)^n*(1-2*sqrt(2)+sqrt(3))) * 3^(3*n/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 17 2014
a(0) = 1; a(n) = Sum_{i, j, k>=0 and i+j+2*k=n-1} a(i) * a(j) * a(2*k). - Seiichi Manyama, Jul 07 2025