cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217156 Number of perfect squared squares of order n up to symmetries of the square.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 12, 30, 172, 541, 1372, 3949, 10209, 26234, 71892, 196357, 528866, 1420439, 3784262, 10012056, 26048712
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

a(n) is the number of solutions to the classic problem of 'squaring the square' by n unequal squares. A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares. A squared rectangle is simple if it does not contain a smaller squared rectangle, and compound if it does.

Examples

			a(21) = 1 because there is a unique perfect squared square of order 21. A014530 gives the sizes of its constituent squares.
		

References

  • H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991, section C2, pp. 81-83.
  • A. J. W. Duijvestijn, Fast calculation of inverse matrices occurring in squared rectangle calculation, Philips Res. Rep. 30 (1975), 329-339.
  • P. J. Federico, Squaring rectangles and squares: A historical review with annotated bibliography, in Graph Theory and Related Topics, J. A. Bondy and U. S. R. Murty, eds., Academic Press, 1979, 173-196.
  • J. H. van Lint and R. M. Wilson, A course in combinatorics, Chapter 34 "Electrical networks and squared squares", pp. 449-460, Cambridge Univ. Press, 1992.
  • J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993.
  • I. Stewart, Squaring the Square, Scientific Amer., 277, July 1997, pp. 94-96.
  • W. T. Tutte, Squaring the Square, in M. Gardner's 'Mathematical Games' column in Scientific American 199, Nov. 1958, pp. 136-142, 166. Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250, and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-7.
  • W. T. Tutte, Graph theory as I have known it, Chapter 1 "Squaring the square", pp. 1-11, Clarendon Press, Oxford, 1998.

Crossrefs

Cf. A181735 (counts symmetries of any squared subrectangles as equivalent).

Formula

a(n) = A006983(n) + A217155(n).

Extensions

Added a(29) = 10209, Stuart E Anderson, Nov 30 2012
Added a(30) = 26234, Stuart E Anderson, May 26 2013
Added a(31) = 71892, a(32) = 196357, Stuart E Anderson, Sep 30 2013
Added a(33) = 528866, a(34) = 1420439, a(35) = 3784262, due to enumeration completed by Jim Williams in 2014 and 2016. Stuart E Anderson, May 02 2016
a(36) and a(37) completed by Jim Williams in 2016 to 2018, added by Stuart E Anderson, Oct 28 2020