A217194 Number of unlabeled simple graphs with n nodes of 2 colors whose components are path graphs.
1, 2, 6, 16, 42, 106, 267, 656, 1602, 3868, 9270, 22048, 52140, 122580, 286798, 667944, 1549259, 3579738, 8242638, 18917600, 43286909, 98768820, 224768425, 510235760, 1155553468, 2611251662, 5888421059, 13252176464, 29768501556, 66749440076, 149415504274
Offset: 0
Keywords
Examples
a(3) = 16 because we have: w w w; w w b; w b b; b b b; w w-w; w w-b; w b-b; b w-w; b w-b; b b-b; w-w-w; w-w-b; w-b-w; b-w-b; b-b-w; b-b-b, where the 2 colors are black b and white w.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*(2^(d-1)+ 2^(floor((d+1)/2)-1)), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 27 2012
-
Mathematica
nn=30;p=Product[1/(1- x^i)^(2^(i-1)+2^(Floor[(i+1)/2]-1)),{i,1,nn}];CoefficientList[Series[p,{x,0,nn}],x]
Formula
G.f.: Product_{i>=1} 1/(1-x^i)^(2^(i-1)+2^(floor((i+1)/2)-1)).
EULER transform of A005418.
Comments