A217199 Odd primes p such that 2p-1 is prime and no p is equal to 2q-1 with q in the sequence.
3, 7, 19, 31, 79, 97, 139, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, 547, 577, 601, 607, 619, 691, 727, 811, 829, 937, 967, 1009, 1069, 1171, 1279, 1297, 1399, 1429, 1459, 1531, 1609, 1627, 1759, 1867, 2011, 2029, 2089, 2131, 2179, 2221, 2281
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..1000
- Jeffery J. Holt, The minimal number of solutions to phi(n)=phi(n+k), Math. Comp., 72 (2003), 2059-2061.
- A. Schinzel and Andrzej Wakulicz, Sur l'équation phi(x+k)=phi(x), I., Acta Arith. 4 (1958), 181-184.
Programs
-
Mathematica
t = {}; p = 2; Do[p = NextPrime[p]; If[PrimeQ[2*p - 1] && ! MemberQ[2*t - 1, p], AppendTo[t, p]], {PrimePi[2281]}]; t
-
PARI
intab(val, tab) = {for (ii=1, length(tab),if (tab[ii] == val, return (1);););return(0);} lista(nn) = {tab = []; for (i=1, nn, len = length(tab); if (len == 0, p = 3, p = nextprime(tab[len]+1)); while (! isprime(2*p-1) || intab((p+1)/2, tab) , p = nextprime(p+1);); tab = concat(tab, p); print1(p, ", "););}
Comments