cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009775 Exponential generating function is tanh(log(1+x)).

Original entry on oeis.org

0, 1, -1, 0, 6, -30, 90, 0, -2520, 22680, -113400, 0, 7484400, -97297200, 681080400, 0, -81729648000, 1389404016000, -12504636144000, 0, 2375880867360000, -49893498214560000, 548828480360160000, 0, -151476660579404160000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(0) = 0, a(4n+3) = 0, a(n) = (-1)^[n == 2, 5, 8 mod 8] * n!/2^floor(n/2). - Ralf Stephan, Mar 06 2004
From Peter Bala, Nov 25 2011: (Start)
(1): a(n) = i*n!/2^(n+1)*{(i-1)^(n+1)-(-1-i)^(n+1)} for n>=1.
The function tanh(log(1+x)) is a disguised form of the rational function (x^2+2*x)/(x^2+2*x+2). Observe that
(2): (x^2+2*x)/(x^2+2*x+2) = d/dx[x - atan((x^2+2*x)/(2*x+2))].
Hence, with an offset of 1, the egf for this sequence is
(3): x - atan((x^2+2*x)/(2*x+2)) = x^2/2! - x^3/3! + 6*x^5/5!- 30*x^6/6! + 90*x^7/7! - ....
This sequence is closely related to the series reversion of the function E(x)-1, where E(x) = sec(x)+tan(x) is the egf for the sequence of zigzag numbers A000111. Under the change of variable x -> sec(x)+tan(x)-1 the rational function (x^2+2*x)/(2*x+2) transforms to tan(x). Hence atan((x^2+2*x)/(2*x+2)) is the inverse function of sec(x)+tan(x)-1.
Recurrence relation:
(4): 2*a(n)+2*n*a(n-1)+n*(n-1)*a(n-2) = 0 with a(1) = 1, a(2) = -1.
(End)

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A371605 Expansion of e.g.f. 1 / (1 - x + x^2/2 - x^3/3).

Original entry on oeis.org

1, 1, 1, 2, 10, 50, 230, 1260, 9240, 76440, 651000, 6006000, 62739600, 719518800, 8736327600, 112588476000, 1558917360000, 23070967920000, 360507459312000, 5925688056288000, 102619150714080000, 1869557514945120000, 35676360727207200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x + x^2/2 - x^3/3), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = n a[n - 1] - n (n - 1) a[n - 2]/2 + n (n - 1) (n - 2) a[n - 3]/3; Table[a[n], {n, 0, 22}]

Formula

a(n) = n * a(n-1) - n * (n-1) * a(n-2) / 2 + n * (n-1) * (n-2) * a(n-3) / 3.

A371621 Expansion of e.g.f. 1 / (1 - x + x^2/2 - x^3/3 + x^4/4).

Original entry on oeis.org

1, 1, 1, 2, 4, -10, -130, -840, -5880, -36960, -142800, 184800, 12843600, 229429200, 3035432400, 31615584000, 258306048000, 943422480000, -26673126480000, -902769547680000, -18345450483360000, -300501672831360000, -3983084426280960000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x + x^2/2 - x^3/3 + x^4/4), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = a[1] = a[2] = 1; a[3] = 2; a[n_] := a[n] = n a[n - 1] - n (n - 1) a[n - 2]/2 + n (n - 1) (n - 2) a[n - 3]/3 - n (n - 1) (n - 2) (n - 3) a[n - 4]/4; Table[a[n], {n, 0, 22}]

Formula

a(n) = n * a(n-1) - n * (n-1) * a(n-2) / 2 + n * (n-1) * (n-2) * a(n-3) / 3 - n * (n-1) * (n-2) * (n-3) * a(n-4) / 4.
Showing 1-3 of 3 results.