A007415
Expand sin x / exp x = x-x^2+x^3/3-x^5/30+... and invert nonzero coefficients.
Original entry on oeis.org
0, 1, -1, 3, 0, -30, 90, -630, 0, 22680, -113400, 1247400, 0, -97297200, 681080400, -10216206000, 0, 1389404016000, -12504636144000, 237588086736000, 0, -49893498214560000, 548828480360160000, -12623055048283680000, 0, 3786916514485104000000
Offset: 0
Absolute values are essentially the same as
A046979, where zeros are replaced by ones.
-
a:= n-> (p-> `if`(p=0,0,1/p))(coeff(series(sin(x)/exp(x), x, n+1), x, n)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 17 2017
-
1/CoefficientList[Sin[x]/Exp[x] + O[x]^26, x] /. ComplexInfinity -> 0 // Quiet (* Jean-François Alcover, Feb 26 2019 *)
A046979
Denominators of Taylor series for exp(x)*sin(x).
Original entry on oeis.org
1, 1, 1, 3, 1, 30, 90, 630, 1, 22680, 113400, 1247400, 1, 97297200, 681080400, 10216206000, 1, 1389404016000, 12504636144000, 237588086736000, 1, 49893498214560000, 548828480360160000, 12623055048283680000, 1, 3786916514485104000000, 49229914688306352000000
Offset: 0
1*x + 1*x^2 + 1/3*x^3 - 1/30*x^5 - 1/90*x^6 - 1/630*x^7 + 1/22680*x^9 + 1/113400*x^10 + ...
- G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
Essentially the same as absolute values of
A007415.
-
a:= n-> denom(coeff(series(sin(x)/exp(x), x, n+1), x, n)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 17 2017
-
Denominator[CoefficientList[Series[Exp[x]Sin[x],{x,0,30}],x] ] (* Harvey P. Dale, Feb 14 2015 *)
-
a(n) = if (n % 4, n!/2^floor(n/2), 1); \\ Michel Marcus, Oct 12 2015
A046981
Denominators of Taylor series for exp(x)*cos(x).
Original entry on oeis.org
1, 1, 1, 3, 6, 30, 1, 630, 2520, 22680, 1, 1247400, 7484400, 97297200, 1, 10216206000, 81729648000, 1389404016000, 1, 237588086736000, 2375880867360000, 49893498214560000, 1, 12623055048283680000, 151476660579404160000, 3786916514485104000000
Offset: 0
1+1*x-1/3*x^3-1/6*x^4-1/30*x^5+1/630*x^7+1/2520*x^8+1/22680*x^9-...
- G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
Absolute values are essentially the same as
A007452.
-
Denominator/@CoefficientList[Series[Exp[x]Cos[x],{x,0,30}],x] (* Harvey P. Dale, Jun 28 2011 *)
A007452
Expand cos x / exp x and invert nonzero coefficients.
Original entry on oeis.org
1, -1, 0, 3, -6, 30, 0, -630, 2520, -22680, 0, 1247400, -7484400, 97297200, 0, -10216206000, 81729648000, -1389404016000, 0, 237588086736000, -2375880867360000, 49893498214560000, 0, -12623055048283680000
Offset: 0
Absolute values are essentially the same as
A046981, where zeros are replaced by ones.
A217260
Expansion of e.g.f. 2*arctan(1+x) - Pi/2.
Original entry on oeis.org
1, -1, 1, 0, -6, 30, -90, 0, 2520, -22680, 113400, 0, -7484400, 97297200, -681080400, 0, 81729648000, -1389404016000, 12504636144000, 0, -2375880867360000, 49893498214560000, -548828480360160000
Offset: 1
-
seq(2^(1-n/2)*sin(3/4*Pi*n)*(n-1)!, n=1..50); # Robert Israel, Jan 17 2017
-
Table[2^(1 - n/2)*(n - 1)!*Sin[3*Pi*n/4], {n, 30}] (* Wesley Ivan Hurt, Oct 14 2023 *)
-
a(n):=n!*sum(((-1)^(n+i)*binomial(n-1,2*i-2))/(2*i-1),i,1,(n+1)/2)/2^(n-1);
A090932
a(n) = n! / 2^floor(n/2).
Original entry on oeis.org
1, 1, 1, 3, 6, 30, 90, 630, 2520, 22680, 113400, 1247400, 7484400, 97297200, 681080400, 10216206000, 81729648000, 1389404016000, 12504636144000, 237588086736000, 2375880867360000, 49893498214560000, 548828480360160000, 12623055048283680000, 151476660579404160000
Offset: 0
From _Rigoberto Florez_, Apr 07 2017: (Start)
a(5) = 5!/2^2 = 120/4 = 30.
a(6) = 6!/2^3 = 1*6*15 = 90.
a(7) = 7!/2^3 = 3*10*21 = 630. (End)
-
[Factorial(n) / 2^Floor(n/2): n in [0..25]]; // Vincenzo Librandi, May 14 2011
-
a:= n-> n!/2^floor(n/2): seq(a(n), n=0..40);
-
Table[n!/2^Floor[n/2], {n, 0, 21}] (* Michael De Vlieger, Jul 25 2016 *)
nxt[{n_,a_,b_}]:={n+1,b,a Binomial[n,2]}; NestList[nxt,{2,1,1},30][[All,2]] (* Harvey P. Dale, Aug 26 2022 *)
-
a(n)=n!/2^floor(n/2)
-
from math import factorial
def A090932(n): return factorial(n)>>(n>>1) # Chai Wah Wu, Jan 18 2023
-
@CachedFunction
def A090932(n):
if n == 0 : return 1
fact = n//2 if is_even(n) else n
return fact * A090932(n-1)
[A090932(n) for n in (0..21)] # Peter Luschny, Oct 13 2012
A296979
Expansion of e.g.f. arcsin(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 3, -12, 68, -480, 4144, -42112, 494360, -6581880, 98079696, -1617373296, 29245459176, -575367843960, 12235339942344, -279650131845120, 6836254328079936, -177979145883651648, 4916243253642325056, -143602294106947553280, 4422411460743707222784
Offset: 0
arcsin(log(1 + x)) = x^1/1! - x^2/2! + 3*x^3/3! - 12*x^4/4! + 68*x^5/5! - 480*x^6/6! + ...
Cf.
A001710,
A001818,
A003703,
A003708,
A009024,
A009454,
A009775,
A104150,
A189815,
A296980,
A296981,
A296982.
-
a:=series(arcsin(log(1+x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[ArcSin[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[-I Log[I Log[1 + x] + Sqrt[1 - Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!
A296980
Expansion of e.g.f. arcsinh(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 1, 0, -2, -30, 446, -3248, 12412, 16020, -211356, -10756944, 284038272, -3556910448, 19122463296, 135073768320, -1286054192304, -108801241372368, 3952903127312016, -65667347037774720, 339816855220730784, 8862271481944986336
Offset: 0
arcsinh(log(1 + x)) = x^1/1! - x^2/2! + x^3/3! - 2*x^5/5! - 30*x^6/6! + ...
Cf.
A001710,
A001818,
A003703,
A003708,
A009024,
A009454,
A009775,
A104150,
A296435,
A296979,
A296981,
A296982.
-
a:=series(arcsinh(log(1+x)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[ArcSinh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Log[Log[1 + x] + Sqrt[1 + Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!
A296981
Expansion of e.g.f. arctan(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 0, 6, -22, -30, 952, -5656, -9952, 508320, -3874992, -20690208, 833780400, -7697940432, -52230156288, 2467649024640, -24686997151104, -329724479772288, 14493628861307136, -159114034671287040, -2682505451050592256, 126421889770129637376
Offset: 0
arctan(log(1 + x)) = x^1/1! - x^2/2! + 6*x^4/4! - 22*x^5/5! - 30*x^6/6! + ...
Cf.
A001710,
A003703,
A003708,
A009024,
A009454,
A009775,
A010050,
A104150,
A110708,
A296979,
A296980,
A296982.
-
a:=series(arctan(log(1+x)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[ArcTan[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[(I/2) Log[1 - I Log[1 + x]] - (I/2) Log[1 + I Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
A296982
Expansion of e.g.f. arctanh(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 4, -18, 118, -930, 8888, -98504, 1248784, -17790480, 281590032, -4901447232, 93064850448, -1914144990576, 42396742460928, -1006101059149440, 25466710774651776, -684902462140798848, 19503187752732408576, -586221766070655432960
Offset: 0
arctanh(log(1 + x)) = x^1/1! - x^2/2! + 4*x^3/3! - 18*x^4/4! + 118*x^5/5! - 930*x^6/6! + ...
Cf.
A001710,
A003703,
A003708,
A009024,
A009454,
A009775,
A010050,
A104150,
A202139,
A296979,
A296980,
A296981.
-
a:=series(arctanh(log(1+x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
-
nmax = 20; CoefficientList[Series[ArcTanh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Log[1 + Log[1 + x]]/2 - Log[1 - Log[1 + x]]/2, {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-10 of 12 results.
Comments