cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343097 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotations and reflections.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 21, 102, 1, 0, 1, 5, 55, 2862, 8548, 1, 0, 1, 6, 120, 34960, 5398083, 4211744, 1, 0, 1, 7, 231, 252375, 537157696, 105918450471, 8590557312, 1, 0, 1, 8, 406, 1284066, 19076074375, 140738033618944, 18761832172500795, 70368882591744, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Array begins:
====================================================================
n\k | 0 1       2            3               4                 5
----+---------------------------------------------------------------
  0 | 1 1       1            1               1                 1 ...
  1 | 0 1       2            3               4                 5 ...
  2 | 0 1       6           21              55               120 ...
  3 | 0 1     102         2862           34960            252375 ...
  4 | 0 1    8548      5398083       537157696       19076074375 ...
  5 | 0 1 4211744 105918450471 140738033618944 37252918396015625 ...
  ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = {(k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2) + 2*k^(n*(n+1)/2) + 2*k^(n*(n+n%2)/2) )/8}

Formula

T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2) + 2*k^(n*(n+1)/2) + 2*k^(n*(n + n mod 2)/2) )/8.

A283033 Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations and reflections.

Original entry on oeis.org

0, 1, 4211744, 105918450471, 140738033618944, 37252918396015625, 3553786240466361696, 167633579843887699759, 4722366500530551259136, 89737248564744874067889, 1250000000501250002500000, 13543382431328404683826391, 119245270812803151147085824
Offset: 0

Views

Author

David Nacin, Feb 27 2017

Keywords

Comments

Cycle index of dihedral group D4 acting on the 25 entries is (2*s(4)^6*s(1) + s(2)^{12}*s(1) + 4*s(2)^10*s(1)^5 + s(1)^25)/8.

Examples

			For n=2 we get a(2)=4211744 inequivalent 5 X 5 binary matrices up to rotations and reflections.
		

Crossrefs

Row n=5 of A343097.
Cf. A217338 (4 X 4 version), A217331 (3 X 3 version), A002817 (2 X 2 version).

Programs

  • GAP
    List([0..20], n -> n^7*(n^18+4*n^8+n^6+2)/8); # G. C. Greubel, Dec 07 2018
  • Magma
    [n^7*(n^18+4*n^8+n^6+2)/8: n in [0..20]]; // G. C. Greubel, Dec 07 2018
    
  • Maple
    [n^7*(n^18+4*n^8+n^6+2)/8$n=0..16]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Table[n^7 (n^18 + 4 n^8 + n^6 + 2)/8, {n, 0, 16}]
  • PARI
    a(n) = n^7*(n^18 + 4*n^8 + n^6 + 2)/8; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A283033(n): return n**7*(n**18 + 4*n**8 + n**6 + 2)/8 # Indranil Ghosh, Feb 27 2017
    
  • Sage
    [n^7*(n^18+4*n^8+n^6+2)/8 for n in range(20)] # G. C. Greubel, Dec 07 2018
    

Formula

a(n) = n^7*(n^18 + 4*n^8 + n^6 + 2)/8.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(x^24 + 4211718*x^23 + 105808945452*x^22 + 137985522720898*x^21 + 33628142067806706*x^20 + 2630674898090394666*x^19 + 86978000386844370748*x^18 + 1424113432167998385342*x^17 + 12744486540004851097263*x^16 + 66464282669989885009756*x^15 + 210673587611186802329496*x^14 + 416826570643036689533748*x^13 + 522455888740564118388412*x^12 + 416826570643036689533748*x^11 + 210673587611186802329496*x^10 + 66464282669989885009756*x^9 + 12744486540004851097263*x^8 + 1424113432167998385342*x^7 + 86978000386844370748*x^6 + 2630674898090394666*x^5 + 33628142067806706*x^4 + 137985522720898*x^3 + 105808945452*x^2 + 4211718*x + 1)/(x - 1)^26. (End)
Showing 1-2 of 2 results.