cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228033 Primes of the form 8^k + 5.

Original entry on oeis.org

13, 2787593149816327892691964784081045188247557, 15177100720513508366558296147058741458143803430094840009779784451085189728165691397
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

a(4) = 8^64655 + 5 = 1.919...*10^58389 is too large to include. - Amiram Eldar, Jul 23 2025

Crossrefs

Cf. A217355 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 8^n+5];
  • Mathematica
    Select[Table[8^n + 5, {n, 4000}], PrimeQ]

A217356 Numbers n such that 8^n - 5 is prime.

Original entry on oeis.org

1, 2, 4, 6, 12, 22, 50, 270, 606, 800, 1704, 5462, 6194, 9206, 10306, 105380
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Comments

All terms are equal to 1/3 of the multiples of 3 in A059608.

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], PrimeQ[8^# - 5] &]
  • PARI
    is(n)=ispseudoprime(8^n-5) \\ Charles R Greathouse IV, Jun 06 2017

A217381 Numbers k such that 8^k + 7 is prime.

Original entry on oeis.org

2, 6, 10, 26, 42, 58, 68, 196, 266, 602, 1170, 1288, 1290, 2990, 4110, 6292, 7446, 36928, 57490, 65478, 78570, 188832, 273452
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Comments

All terms are equal to 1/3 of the multiples of 3 in A057195.
Naturally these numbers are even because (9-1)^(2n+1)+7 is divisible by 3. - Bruno Berselli, Oct 03 2012

Crossrefs

Cf. A144360 (associated primes).

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[8^# + 7] &]
  • PARI
    is(n)=ispseudoprime(8^n+7) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(18)-a(22) from A057195 by Robert Price, Jul 23 2017
a(23) from the data at A057195 added by Amiram Eldar, Jul 23 2025

A217382 Numbers k such that 8^k + 9 is prime.

Original entry on oeis.org

1, 2, 3, 6, 10, 19, 22, 109, 798, 1498, 1519, 3109, 5491, 13351, 26983, 48799, 57909, 98109
Offset: 1

Views

Author

Vincenzo Librandi, Oct 03 2012

Keywords

Comments

All terms are equal to 1/3 of the multiples of 3 in A057196.

Crossrefs

Cf. A145440 (associated primes).

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[8^# + 9] &]
  • PARI
    is(n)=ispseudoprime(8^n+9) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(16)-a(18) from Michael S. Branicky, May 17 2025 using b-file at A057196
Showing 1-4 of 4 results.