A217360 a(n) = 2^n*binomial(4*n, n)/(3*n+1).
1, 2, 16, 176, 2240, 31008, 453376, 6888960, 107707392, 1721477120, 28000141312, 461964898304, 7712495058944, 130050777006080, 2211737871974400, 37892693797109760, 653389823437701120, 11330548232319664128, 197475886172892823552
Offset: 0
Links
- Jinyuan Wang, Table of n, a(n) for n = 0..100
- D. Birmajer, J. B. Gil, J. D. Gil and M. D. Weiner, Schröder Coloring and Applications, arXiv:1908.08103 [math.CO], 2019.
Crossrefs
Cf. A153231 (x+2*x^3).
Programs
-
Magma
[2^n*Binomial(4*n, n)/(3*n+1): n in [0..25]]; // Vincenzo Librandi, Jul 26 2019
-
Maple
A100089 := proc(n) (3*n+1)! ; end proc: A060706 := proc(n) (4*n)!/n!/4^n ; end proc: A217360 := proc(n) 8^(n)*A060706(n)/A100089(n) ; end proc: seq(A217360(n), n=0..20);
-
Mathematica
Table[2^n Binomial[4 n, n] / (3 n + 1), {n, 0, 20}] (* Vincenzo Librandi, Jul 26 2019 *)
Formula
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n)- 8*(4*n-1)*(4*n-3)*(4*n-2)*a(n-1) = 0, so a(n) = 8^n*A060706(n)/A100089(n) = 2^n*A002293(n).
a(n) = [x^(3*n)](f(x)/x) where f(x) is the reversion of x - 2*x^4.
G.f.: F([1/4, 1/2, 3/4], [2/3, 4/3], 512*x/27), where F is the generalized hypergeometric function. - Stefano Spezia, Aug 18 2019
G.f. A(x) satisfies: A(x) = 1 / (1 - 2 * x * A(x)^3). - Ilya Gutkovskiy, Nov 12 2021
Extensions
Offset decreased by 1 and name changed by Michael D. Weiner, Jul 25 2019
Comments