cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217367 a(n) = ((n+7) / gcd(n+7,4)) * (n / gcd(n,4)).

Original entry on oeis.org

0, 2, 9, 15, 11, 15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92, 102, 225, 247, 135, 147, 319, 345, 186, 200, 429, 459, 245, 261, 555, 589, 312, 330, 697, 735, 387, 407, 855, 897, 470, 492, 1029, 1075, 561, 585, 1219, 1269, 660, 686, 1425, 1479, 767, 795, 1647
Offset: 0

Views

Author

Jean-François Alcover, Oct 01 2012

Keywords

Comments

The 7th sequence (p=7) of the family A060819(n)*A060819(n+p).

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2+3*x+6*x^4-6*x^5+4*x^6-3*x^7)/(1-x+x^2-x^3)^3)); // G. C. Greubel, Sep 20 2018
  • Mathematica
    a[n_] := n*(n+7)/(2*Mod[1 + Floor[n/2], 2] + 2); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 01 2012 *)
    CoefficientList[Series[x (2 + 3 x + 6 x^4 - 6 x^5 + 4 x^6 - 3 x^7) / (1 - x + x^2 - x^3)^3, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 17 2013 *)
  • PARI
    my(x='x+O('x^50)); Vec(x*(2+3*x+6*x^4-6*x^5+4*x^6-3*x^7)/(1-x+x^2-x^3)^3) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = n*(n+7)/(2*mod(1 + floor(n/2), 2) + 2).
G.f.: x*(2 + 3*x + 6*x^4 - 6*x^5 + 4*x^6 - 3*x^7)/(1 - x + x^2 - x^3)^3.
From Peter Bala, Aug 07 2022: (Start)
a(n) = numerator of n*(n+7)/4.
a(n) is quasi-polynomial in n: if p(n) = n*(n+7)/4 then a(4*n) = p(4*n), a(4*n+1) = p(4*n+1), a(4*n+2) = 2*p(4*n+2) and a(4*n+3) = 2*p(4*n+3) = A303295(n+1) for n >= 1. (End)
Sum_{n>=1} 1/a(n) = 697/735 + Pi/14. - Amiram Eldar, Aug 16 2022