cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217391 Partial sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 2, 11, 180, 5805, 298486, 22228975, 2258856824, 300194704049, 50529463186170, 10505093602625139, 2643441560563225468, 791779611505017309493, 278371498870260182630654, 113516551713466910954246903, 53143864598655784249290736512, 28309328562668956145157858372537
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

Partial sums of A122725.

Programs

  • Magma
    A000670:=func;
    [&+[A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k]^2, {k, 0, n}], {n, 0, 100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(t(k)^2,k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, (sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = Sum_{k=0..n} t(k)^2 where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014