A217391 Partial sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.
1, 2, 11, 180, 5805, 298486, 22228975, 2258856824, 300194704049, 50529463186170, 10505093602625139, 2643441560563225468, 791779611505017309493, 278371498870260182630654, 113516551713466910954246903, 53143864598655784249290736512, 28309328562668956145157858372537
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
A000670:=func
; [&+[A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012 -
Mathematica
t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k]^2, {k, 0, n}], {n, 0, 100}]
-
Maxima
t(n):=sum(stirling2(n,k)*k!,k,0,n); makelist(sum(t(k)^2,k,0,n),n,0,40);
-
PARI
for(n=0,30, print1(sum(k=0,n, (sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018
Formula
a(n) = Sum_{k=0..n} t(k)^2 where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014