A217392 Alternating sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.
1, 0, 9, 160, 5465, 287216, 21643273, 2214984576, 295720862649, 49933547619472, 10404630591819497, 2622531836368780832, 786513638108085303193, 276793205620647080017968, 112961387008976003691598281, 52917386659933341334644891328, 28203267311410367019573922744697
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
A000670:=func
; [&+[(-1)^(n-k)*A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012 -
Mathematica
t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n-k)t[k]^2, {k, 0, n}], {n, 0, 100}]
-
Maxima
t(n):=sum(stirling2(n,k)*k!,k,0,n); makelist(sum((-1)^(n-k)*t(k)^2,k,0,n),n,0,40);
-
PARI
for(n=0,30, print1(sum(k=0,n, (-1)^(n-k)*(sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018
Formula
a(n) = sum((-1)^(n-k)*t(k)^2, k=0..n), where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014