cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217392 Alternating sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 0, 9, 160, 5465, 287216, 21643273, 2214984576, 295720862649, 49933547619472, 10404630591819497, 2622531836368780832, 786513638108085303193, 276793205620647080017968, 112961387008976003691598281, 52917386659933341334644891328, 28203267311410367019573922744697
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A000670:=func;
    [&+[(-1)^(n-k)*A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n-k)t[k]^2, {k, 0, n}], {n, 0, 100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum((-1)^(n-k)*t(k)^2,k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, (-1)^(n-k)*(sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = sum((-1)^(n-k)*t(k)^2, k=0..n), where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014