cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217448 Least k > 0 such that 1 + n^2 and 1 + (n+k)^2 have the same smallest prime factor.

Original entry on oeis.org

2, 6, 2, 26, 2, 74, 2, 4, 2, 404, 2, 6, 2, 366, 2, 514, 2, 4, 2, 1564, 2, 6, 2, 1106, 2, 4010, 2, 4, 2, 34, 2, 6, 2, 10, 2, 2594, 2, 4, 2, 22334, 2, 6, 2, 16, 2, 58, 2, 4, 2, 64, 2, 6, 2, 29062, 2, 18710, 2, 4, 2, 10, 2, 6, 2, 42, 2, 17428, 2, 4, 2, 16, 2, 6
Offset: 1

Views

Author

Michel Lagneau, Oct 03 2012

Keywords

Comments

Alternate title: Least k > 0 such that A089120(n) = A089120(n+k).
A089120(n): smallest prime factor of n^2 + 1.
Conjecture: a(n) exists for all n.

Examples

			a(10) = 404 because 10^2 + 1 = 101, (10+404)^2+1 = 101*1697 so A089120(10) = A089120(414) = 101;
a(170) = 404274 because 170^2 + 1 = 28901, (170+404274)^2+1 = 163574949137 = 28901* 5659837 so A089120(170) = A089120(40444) = 28901.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..100): for n from 1 to 100 do:x:=factorset(n^2+1):n1:=nops(x): T[n] := x[1]:od:for a from 1 to 80 do:p:=T[a]:ii:=0:for k from 1 to 50000 while(ii=0) do: z:=factorset((a+k)^2+1): n2:=nops(z):if z[1]=p then printf(`%d, `,k):ii:=1:else fi:od:od:
  • Mathematica
    sspf[n_]:=Module[{c=FactorInteger[1+n^2][[1,1]],k=1},While[ FactorInteger[ 1+ (n+k)^2][[1,1]]!=c,k++];k]; Array[sspf,80] (* Harvey P. Dale, Oct 12 2012 *)
  • PARI
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A217448(n) = { my(spf=A020639(1+(n^2)), x); for(k=1,oo,x=1+((n+k)^2); if(!(x%spf) && A020639(x)==spf,return(k))); }; \\ Antti Karttunen, May 24 2021
Showing 1-1 of 1 results.