cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217441 Numbers k such that 26*k+1 is a square.

Original entry on oeis.org

0, 24, 28, 100, 108, 228, 240, 408, 424, 640, 660, 924, 948, 1260, 1288, 1648, 1680, 2088, 2124, 2580, 2620, 3124, 3168, 3720, 3768, 4368, 4420, 5068, 5124, 5820, 5880, 6624, 6688, 7480, 7548, 8388, 8460, 9348, 9424, 10360, 10440, 11424, 11508, 12540, 12628
Offset: 1

Views

Author

Bruno Berselli, Nov 14 2012

Keywords

Comments

Equivalently, numbers of the form m*(26*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of 2*h*(h+1)/13.

Crossrefs

Cf. similar sequences listed in A219257.
Cf. A174768 (the squares A174768^2 belong to the sequence), A175886.

Programs

  • Magma
    [n: n in [0..13000] | IsSquare(26*n+1)];
    
  • Magma
    I:=[0,24,28,100,108]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A217441:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(26*n+1), integer) then print(n);
    fi; od; end:
    A217441(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 13000], IntegerQ[Sqrt[26 # + 1]] &]
    CoefficientList[Series[4 x (6 + x + 6 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,24,28,100,108},50] (* Harvey P. Dale, Nov 03 2019 *)
  • PARI
    a(n)=is(n)=issquare(26*n+1) \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: 4*x^2*(6 + x + 6*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (26*n*(n-1) + 11*(-1)^n*(2*n - 1) - 3)/4 + 3 = (26*n + 11*(-1)^n - 15)*(26*n + 11*(-1)^n - 11)/104.
26*a(2*n-1)+1 = A175886(4*n-3)^2, 26*a(2*n)+1 = A175886(4*n)^2.
Sum_{n>=2} 1/a(n) = 13/2 - cot(Pi/13)*Pi/2. - Amiram Eldar, Mar 17 2022