cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217486 Binomial convolution of the numbers in sequence A080253.

Original entry on oeis.org

1, 6, 52, 600, 8656, 149856, 3026752, 69866880, 1814338816, 52350752256, 1661575754752, 57531530434560, 2158011794968576, 87173881613869056, 3772959800981143552, 174183372619165040640, 8543978588021450407936, 443748799382401230176256
Offset: 0

Views

Author

Emanuele Munarini, Oct 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[Binomial[n,k]c[k]c[n-k], {k,0,n}], {n,0,100}]; Table[2^n t[n+1], {n,0,100}]
    With[{nn=20},CoefficientList[Series[Exp[2x]/(2-Exp[2x])^2,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 09 2017 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
    makelist(sum(binomial(n,k)*c(k)*c(n-k),k,0,n),n,0,10);
    makelist(2^n*t(n+1),n,0,40);
    
  • Sage
    def A217486(n):
        return 2^n*add(add((-1)^(j-i)*binomial(j,i)*i^(n+1) for i in range(n+2)) for j in range(n+2))
    [A217486(n) for n in range(18)] # Peter Luschny, Jul 22 2014

Formula

a(n) = sum(binomial(n,k)*c(k)*c(n.k),k=0..n), where c(n) = A080253(n).
a(n) = 2^n*t(n+1), where t(n) = ordered Bell numbers (A000670).
E.g.f. exp(2*x)/(2-exp(2*x))^2.
G.f.: 1/G(0) where G(k) = 1 - x*3*(2*k+2) + x^2*(k+1)*(k+2)*(1-3^2)/G(k+1) ; (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Jan 11 2013.
a(n) ~ n!*n*2^(n-1)/(log(2))^(n+2). - Vaclav Kotesovec, Aug 11 2013