A217484
Partial sums of the numbers in sequence A080253.
Original entry on oeis.org
1, 4, 21, 168, 1865, 26348, 450205, 9011152, 206624529, 5338349652, 153408637349, 4853054571896, 167576795780953, 6271355892192316, 252836327218276653, 10924378168890333600, 503589353964709474337, 24669610145575233317540
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k], {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(c(k),k,0,n),n,0,10);
A217483
Alternating sums of the numbers in sequence A080253.
Original entry on oeis.org
1, 2, 15, 132, 1565, 22918, 400939, 8160008, 189453369, 4942271754, 143128015943, 4556517918604, 158167223290453, 5945611873120910, 240619359452963427, 10430922482219093520, 482234053313600047217, 23683786738296923795986
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[(-1)^(n-k)c[k],{k,0,n}], {n, 0, 100}]
nmax = 20; CoefficientList[Series[E^x/(2 - E^(2*x)) + Log[2 - E^(2*x)] / (2*E^x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 27 2017 *)
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum((-1)^(n-k)*c(k),k,0,n),n,0,10);
A217485
Convolution of the numbers in sequence A080253.
Original entry on oeis.org
1, 6, 43, 396, 4565, 64146, 1073919, 20996376, 471081385, 11947911966, 338204687315, 10570101018276, 361458024882045, 13421571912745386, 537661560385125031, 23108777539028187696, 1060571767117824260945, 51760585513634983767606
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k]c[n-k], {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(c(k)*c(n-k),k,0,n),n,0,40);
A217487
Partial sums of the squares of the numbers in sequence A080253.
Original entry on oeis.org
1, 10, 299, 21908, 2901717, 602319006, 180257075455, 73470070612264, 39124516839956393, 26373727254869321522, 21951183825927218885331, 22108623093930072226980540, 26501124576166085360405809789, 37282620382364481062065321327558
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k]^2, {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(c(k)^2,k,0,n),n,0,40);
A217488
Alternating sums of the squares of the numbers in sequence A080253.
Original entry on oeis.org
1, 8, 281, 21328, 2858481, 596558808, 179058197641, 73110755339168, 38977936014004961, 26295624802015360168, 21898514473870334203641, 22064773395630274673891568, 26456951179676525013504937681, 37229662306608638451691410580088
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[(-1)^(n-k)c[k]^2, {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum((-1)^(n-k)*c(k)^2,k,0,n),n,0,40);
Showing 1-5 of 5 results.