A217484
Partial sums of the numbers in sequence A080253.
Original entry on oeis.org
1, 4, 21, 168, 1865, 26348, 450205, 9011152, 206624529, 5338349652, 153408637349, 4853054571896, 167576795780953, 6271355892192316, 252836327218276653, 10924378168890333600, 503589353964709474337, 24669610145575233317540
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k], {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(c(k),k,0,n),n,0,10);
A217486
Binomial convolution of the numbers in sequence A080253.
Original entry on oeis.org
1, 6, 52, 600, 8656, 149856, 3026752, 69866880, 1814338816, 52350752256, 1661575754752, 57531530434560, 2158011794968576, 87173881613869056, 3772959800981143552, 174183372619165040640, 8543978588021450407936, 443748799382401230176256
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[Binomial[n,k]c[k]c[n-k], {k,0,n}], {n,0,100}]; Table[2^n t[n+1], {n,0,100}]
With[{nn=20},CoefficientList[Series[Exp[2x]/(2-Exp[2x])^2,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 09 2017 *)
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(binomial(n,k)*c(k)*c(n-k),k,0,n),n,0,10);
makelist(2^n*t(n+1),n,0,40);
-
def A217486(n):
return 2^n*add(add((-1)^(j-i)*binomial(j,i)*i^(n+1) for i in range(n+2)) for j in range(n+2))
[A217486(n) for n in range(18)] # Peter Luschny, Jul 22 2014
A217483
Alternating sums of the numbers in sequence A080253.
Original entry on oeis.org
1, 2, 15, 132, 1565, 22918, 400939, 8160008, 189453369, 4942271754, 143128015943, 4556517918604, 158167223290453, 5945611873120910, 240619359452963427, 10430922482219093520, 482234053313600047217, 23683786738296923795986
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[(-1)^(n-k)c[k],{k,0,n}], {n, 0, 100}]
nmax = 20; CoefficientList[Series[E^x/(2 - E^(2*x)) + Log[2 - E^(2*x)] / (2*E^x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 27 2017 *)
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum((-1)^(n-k)*c(k),k,0,n),n,0,10);
A217485
Convolution of the numbers in sequence A080253.
Original entry on oeis.org
1, 6, 43, 396, 4565, 64146, 1073919, 20996376, 471081385, 11947911966, 338204687315, 10570101018276, 361458024882045, 13421571912745386, 537661560385125031, 23108777539028187696, 1060571767117824260945, 51760585513634983767606
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k]c[n-k], {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(c(k)*c(n-k),k,0,n),n,0,40);
A217487
Partial sums of the squares of the numbers in sequence A080253.
Original entry on oeis.org
1, 10, 299, 21908, 2901717, 602319006, 180257075455, 73470070612264, 39124516839956393, 26373727254869321522, 21951183825927218885331, 22108623093930072226980540, 26501124576166085360405809789, 37282620382364481062065321327558
Offset: 0
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k]^2, {k,0,n}], {n,0,100}]
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(sum(c(k)^2,k,0,n),n,0,40);
Showing 1-5 of 5 results.