cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005925 Theta series of diamond.

Original entry on oeis.org

1, 0, 0, 4, 0, 0, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 24, 0, 0, 16, 0, 0, 0, 0, 12, 0, 0, 24, 0, 0, 0, 0, 24, 0, 0, 12, 0, 0, 0, 0, 8, 0, 0, 24, 0, 0, 0, 0, 48, 0, 0, 36, 0, 0, 0, 0, 6, 0, 0, 12
Offset: 0

Views

Author

Keywords

Comments

a(n) > 0 iff n is in A047470. - Robert Israel, Jul 06 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    S:= series((JacobiTheta2(0,z^4)^3 + JacobiTheta3(0,z^4)^3 + JacobiTheta4(0,z^4)^3)/2, z, 101):
    seq(coeff(S,z,j),j=0..100); # Robert Israel, Jul 06 2016
  • Mathematica
    terms = 68; s = Simplify[Normal[(EllipticTheta[2, 0, z^4]^3 + EllipticTheta[3, 0, z^4]^3 + EllipticTheta[4, 0, z^4]^3)/2 + O[z]^terms], z > 0]; CoefficientList[s, z] (* Jean-François Alcover, Jul 07 2017 *)

Formula

(theta_2^3 + theta_3^3 + theta_4^3) / 2.

A005926 Theta series of diamond with respect to midpoint of edge.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 2*q^(3/16) + 6*q^(19/16) + 12*q^(35/16) + 12*q^(51/16) + 6*q^(67/16) + 18*q^(83/16) + 18*q^(99/16) + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    prec = 10;
    eta[q_, a_] := Sum[q^((i + a)^2), {i, Range[-prec, prec]}];
    t2[q_] := eta[q, 1/2];
    t3[q_] := eta[q, 0];
    T = Expand[t2[q^(1/2)]*(t2[q^2]*eta[q^4, 3/8] + t3[q^2]*eta[q^4, 1/8])] // PowerExpand;
    A = Range[prec*16 + 1];
    Do[A[[i + 1]] = Coefficient[T, q, i/16], {i, 1, prec*16}];
    A[[1]] = 0; A  (* Andy Huchala, May 17 2023 *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Showing 1-2 of 2 results.