cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A217512 Partial sums of nonzero terms in A005925.

Original entry on oeis.org

1, 5, 17, 29, 35, 47, 71, 87, 99, 123, 147, 159, 167, 191, 239, 275, 281, 293, 329, 357, 381, 417, 441, 465, 489, 525, 597, 633, 657, 705, 729, 741, 801, 849, 885, 915, 943, 1015, 1063, 1087, 1099, 1147, 1207, 1231, 1291, 1339, 1363, 1371, 1419, 1503, 1551
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Sizes of clusters of atoms in diamond structure.

References

  • N. J. A. Sloane, Theta-Series and Magic Numbers for Diamond and Certain Ionic Crystal Structures, J. Math. Phys., 28 (1987), pp. 1653-1657.

Crossrefs

Programs

  • PARI
    lista(m) = {nm = sqrtint(m)+1; T2 = sum(i=0, nm, 2*x^((i+1/2)^2 - 1/4)); T23 = T2^3; T3 = 1+ sum(i=1, nm, 2*x^(i^2)); T4 = subst(T3, x, -x); T33 = T3^3; T334 = sum(i=0, m, polcoeff(T33, i)*x^(4*i)); T43 = T4^3; T434 = sum(i=0, m, polcoeff(T43, i)*x^(4*i)); P = sum(i=0, poldegree(T23), polcoeff(T23,i)*x^(numerator(i+3/4))); D = (P + T334 + T434)/2; s = 0; for (i=0, m, v = polcoeff(D, i); if (v != 0, s += v; print1(s, ", ");););} \\ Michel Marcus, Feb 19 2013

Extensions

More terms from Michel Marcus, Feb 19 2013

A077307 Partial sums of theta series of diamond (A005925).

Original entry on oeis.org

1, 1, 1, 5, 5, 5, 5, 5, 17, 17, 17, 29, 29, 29, 29, 29, 35, 35, 35, 47, 47, 47, 47, 47, 71, 71, 71, 87, 87, 87, 87, 87, 99, 99, 99, 123, 123, 123, 123, 123, 147, 147, 147, 159, 159, 159, 159, 159, 167, 167, 167, 191, 191, 191, 191, 191, 239, 239, 239, 275, 275, 275, 275, 275, 281, 281, 281, 293
Offset: 0

Views

Author

Jonathan Vos Post, Dec 13 2010

Keywords

Crossrefs

Cf. A005925.

Formula

a(n) = Sum_{i=0..n} A005925(i).

Extensions

Incorrect a(16)=35 removed by Georg Fischer, Aug 29 2020

A217514 Partial sums of nonzero terms in A005927.

Original entry on oeis.org

4, 10, 22, 30, 42, 66, 82, 106, 136, 148, 172, 196, 220, 256, 268, 316, 344, 368, 404, 452, 476, 512, 542, 578, 610, 634, 706, 730, 790, 838, 874, 922, 950, 974, 1022, 1034, 1130, 1190, 1214, 1274, 1346, 1370, 1418, 1472, 1520, 1568, 1604, 1676, 1724, 1784
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Sizes of clusters of atoms in diamond structure.

References

  • N. J. A. Sloane, Theta-Series and Magic Numbers for Diamond and Certain Ionic Crystal Structures, J. Math. Phys., 28 (1987), pp. 1653-1657.

Crossrefs

Programs

  • PARI
    lista(m) = {s = 0; for (n=0, m, v = A005927(n); if (v != 0, s += v; print1(s, ", ");););} \\ Michel Marcus, Feb 17 2013

Extensions

More terms from Michel Marcus, Feb 17 2013

A035878 Number of points of l_1 norm n in the "diamond" lattice D^+_4.

Original entry on oeis.org

1, 0, 40, 32, 272, 160, 888, 448, 2080, 960, 4040, 1760, 6960, 2912, 11032, 4480, 16448, 6528, 23400, 9120, 32080, 12320, 42680, 16192, 55392, 20800, 70408, 26208, 87920, 32480, 108120, 39680, 131200, 47872, 157352, 57120, 186768, 67488, 219640, 79040, 256160
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Examples

			This 4D lattice consists of points with coordinates that have even sum and are either all integer or all half-integer. (It is actually similar to Z^4.) The a(2) = 40 lattice vectors having l_1 norm 2 include: +-(1,1,1,1)/2, 6 permutations of (1,1,-1,-1)/2, 6 permutations with 4 choices of signs in (+-1,+-1,0,0), and 4 permutations with 2 choices of signs in (+-2,0,0,0), totaling 2 + 6 + 6*4 + 4*2 = 40.
		

Crossrefs

Programs

  • Maple
    n := 4; A035878 := proc(m) global n; local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end;
  • Mathematica
    f[m_, n_] := 2^(n-1) *Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2 *n* Hypergeometric2F1[1-m, 1-n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 4], {m, 0, 32}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)
    CoefficientList[Series[(x^8 + 36 x^6 + 32 x^5 + 118 x^4 + 32 x^3 + 36 x^2 + 1)/((x - 1)^4 (x + 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)

Formula

For n>0, a(n) = ( 2n^2 + 1 + (n^2+2)*(-1)^n ) * 4n/3.
G.f.: (x^8+36*x^6+32*x^5+118*x^4+32*x^3+36*x^2+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 18 2012

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
More terms from Vincenzo Librandi, Oct 21 2013
Name edited by Andrey Zabolotskiy, Aug 29 2022

A217513 Partial sums of nonzero terms in A005926.

Original entry on oeis.org

2, 8, 20, 32, 38, 56, 74, 86, 116, 130, 136, 166, 190, 208, 238, 264, 288, 318, 342, 360, 384, 420, 444, 492, 522, 534, 588, 612, 648, 690, 714, 732, 768, 822, 840, 894, 942, 966, 1026, 1050, 1068, 1134, 1190, 1220, 1256, 1280, 1310, 1382, 1418, 1448, 1508
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Sizes of clusters of atoms in diamond structure.

Crossrefs

Extensions

More terms from Andy Huchala, May 17 2023

A217511 Theta series of hexagonal diamond or Lonsdaleite net with respect to an atom.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Eq. (20) of [Sloane, 1987] gives the g.f. of this sequence if one replaces the binomial in the round brackets with the factor eta_{3/8}(X^(16/3)); this error propagated from Eq. (67) of [Sloane & Teo, 1985], where the second curly brackets should be replaced by psi_{8/3}(q^(16/3)) to get the g.f. of A005873 (or, alternatively, replace the power 4/3 with 1/3 in both formulas). - Andrey Zabolotskiy, Jun 04 2022

Crossrefs

Formula

a(n) = A004012(n/8) + A005873(n), where the 1st term is 0 unless 8|n. - Andrey Zabolotskiy, Jun 03 2022

Extensions

Missing a(71) = 0 inserted by Andrey Zabolotskiy, Jun 03 2022

A290705 Theta series of triamond.

Original entry on oeis.org

1, 3, 0, 6, 0, 6, 8, 12, 6, 9, 0, 6, 0, 18, 0, 12, 12, 12, 0, 18, 0, 12, 24, 12, 8, 21, 0, 24, 0, 6, 0, 24, 6, 24, 0, 12, 0, 30, 24, 12, 24, 12, 0, 30, 0, 30, 0, 24, 24, 27, 0, 12, 0, 18, 32, 36, 0, 24, 0, 18, 0, 30, 0, 36, 12, 12, 0, 42, 0, 24, 48, 12, 30
Offset: 0

Views

Author

Andrey Zabolotskiy, Aug 09 2017

Keywords

Comments

Theta series with respect to a node of a lattice known as triamond, Laves graph [embedded in space], K_4 lattice, (10,3)-a, or srs net. This lattice possesses the "strong isotropic" property; the only other lattice that has this property in 3 dimensions is the diamond lattice. Unlike diamond, triamond is chiral.
A004013 and 3*A045828, interleaved.

Crossrefs

See A038620 for coordination sequence.

Programs

  • Mathematica
    (* count lattice sites straightforwardly *)
    cell = Join @@ ({#, # + {1, 1, 1}/2} & /@ {{0, 0, 0}, {1/4, 0, 1/4}, {-1/4, -1/4, 0}, {0, 1/4, -1/4}}); (* lattice sites in a conventional bcc unit cell *)
    n = 10;
    s = O[q]^(n^2 + 1) + Sum[q^(8 Norm[a + {i, j, k}]^2), {i, -n-1, n+1}, {j, -n-1,  n+1}, {k, -n-1, n+1}, {a, cell}];
    CoefficientList[Normal[s], q] &
    (* or use the generation function *)
    a[n_] := SeriesCoefficient[ EllipticTheta[3, 0, x^8]^3 + EllipticTheta[ 2, 0, x^8]^3 + 3/4 EllipticTheta[3, 0, x^2] EllipticTheta[2, 0, x^2]^2, {x, 0, n}];
Showing 1-7 of 7 results.