A217561 The only prime p such that 3a < p < 3b where a, b are consecutive primes.
7, 37, 53, 89, 113, 127, 211, 293, 307, 449, 541, 577, 587, 593, 683, 691, 719, 797, 839, 929, 937, 1259, 1297, 1399, 1471, 1499, 1567, 1709, 1777, 1801, 1811, 1847, 1973, 1979, 2039, 2221, 2467, 2503, 2579, 2633, 2647, 2819, 2939, 3037, 3061, 3109, 3187, 3271
Offset: 1
Keywords
Examples
7 is the only prime in the interval [3*2, 3*3] = [6,9], 37 is the only prime in the interval [3*11, 3*13] = [33,39], 53 is the only prime in the interval [3*17, 3*19] = [51,57].
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
Crossrefs
Cf. A166251 (k=2).
Programs
-
Mathematica
a = 2; b = 3; s = {}; k = 3; Do[If[(p=NextPrime[k*a])< k*b && NextPrime[p] > k*b, AppendTo[s, p]]; a = b; b = NextPrime[b], {100}]; s NextPrime/@Transpose[Select[3*Partition[Prime[Range[200]],2,1], NextPrime[ #[[1]]] == NextPrime[#[[2]],-1]&]][[1]] (* Harvey P. Dale, Oct 12 2012 *)
Comments