A217589 Bit reversed 16-bit numbers.
0, 32768, 16384, 49152, 8192, 40960, 24576, 57344, 4096, 36864, 20480, 53248, 12288, 45056, 28672, 61440, 2048, 34816, 18432, 51200, 10240, 43008, 26624, 59392, 6144, 38912, 22528, 55296, 14336, 47104, 30720, 63488, 1024, 33792, 17408, 50176, 9216, 41984
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A160638.
Programs
-
Haskell
import Data.Bits (testBit, setBit) import Data.Word (Word16) a217589 :: Word16 -> Word16 a217589 n = rev 0 0 where rev 16 y = y rev i y = rev (i + 1) (if testBit n i then setBit y (15 - i) else y) -- Reinhard Zumkeller, Jan 12 2013
-
Maple
a:= n-> Bits[Join](ListTools[Reverse](Bits[Split](n, bits=16))): seq(a(n), n=0..37); # Alois P. Heinz, Nov 28 2024
-
Mathematica
Table[FromDigits[Reverse[IntegerDigits[n, 2, 16]], 2], {n, 0, 50}] (* T. D. Noe, Oct 09 2012 *) IntegerReverse[Range[0, 127], 2, 16] (* Paolo Xausa, Nov 28 2024 *)
-
PARI
a(n)=sum(i=0,15,bittest(n,15-i)<
Formula
a(a(n))=n.
a(m)+a(n)=a(m+n) whenever n & m = 0, where "&" is binary bit-AND, i.e., whenever m and n have no (1-)bits in common.
a(n) is even for all n < 2^15 = a(1) and odd for all larger n.
a(n) = floor(A030101(n+65536)/2). - Reinhard Zumkeller, Jan 12 2013
Comments