cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230460 Prime(2*prime(n)).

Original entry on oeis.org

7, 13, 29, 43, 79, 101, 139, 163, 199, 271, 293, 373, 421, 443, 491, 577, 647, 673, 757, 821, 839, 929, 983, 1061, 1181, 1231, 1277, 1307, 1361, 1429, 1609, 1667, 1759, 1789, 1973, 1997, 2083, 2161, 2243, 2339, 2411, 2441, 2633, 2663, 2707, 2729, 2917
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2013

Keywords

Comments

A subsequence of A031378 (subsequence of A031215) and of A106349, which are both subsequences of A007821 which is the complement of A006450 in the primes A000040.

Examples

			a(3) = 29 because the third prime is 5, and 2 * 5 = 10, and then we see that the tenth prime is 29.
a(4) = 43 because the fourth prime is 7, and 2 * 7 = 14, and then we see that the fourteenth prime is 43.
		

Crossrefs

Cf. A217622.

Programs

Formula

a(n) ~ 2n log(n) log(2n log(n)) ~ 2n (log n)^2.
a(n) = A000040(A100484(n)). - Omar E. Pol, Oct 19 2013

A230481 a(n) = prime(prime(2*n)) - prime(2*prime(n)).

Original entry on oeis.org

-2, 4, 12, 24, 30, 56, 52, 78, 84, 82, 108, 88, 126, 144, 126, 162, 150, 204, 210, 210, 248, 242, 234, 348, 266, 268, 320, 362, 380, 394, 304, 396, 340, 480, 378, 420, 466, 486, 476, 464, 498, 578, 476, 566, 592, 678, 600, 456, 524, 660, 714, 742, 768, 756
Offset: 1

Views

Author

M. F. Hasler, Oct 20 2013

Keywords

Comments

As difference of two odd primes, all terms are even.

Crossrefs

Programs

  • PARI
    a=n->prime(prime(2*n))-prime(2*prime(n))

Formula

a(n) = A217622(n) - A230460(n) = 2*A230482(n).

A230482 a(n) = (prime(prime(2*n)) - prime(2*prime(n)))/2.

Original entry on oeis.org

-1, 2, 6, 12, 15, 28, 26, 39, 42, 41, 54, 44, 63, 72, 63, 81, 75, 102, 105, 105, 124, 121, 117, 174, 133, 134, 160, 181, 190, 197, 152, 198, 170, 240, 189, 210, 233, 243, 238, 232, 249, 289, 238, 283, 296, 339, 300, 228, 262, 330, 357, 371, 384, 378, 372
Offset: 1

Views

Author

M. F. Hasler, Oct 20 2013

Keywords

Comments

As difference of two odd primes, all terms of A230481(n) = prime(prime(2*n))-prime(2*prime(n)) are even, which motivates to define the present sequence.
Further values: a(100)=617, a(10^3)=9344, a(10^4)=114171, a(10^5)=1325772, a(10^6)=14979156; a(10^10)~2.2*10^11, a(10^20)~3.9*10^21, a(10^30)~5.5*10^31.

Crossrefs

Programs

  • PARI
    a=n->(prime(prime(2*n))-prime(2*prime(n)))/2

Formula

a(n) = (A217622(n) - A230460(n))/2.

A228529 a(n) = prime(n*prime(n)).

Original entry on oeis.org

3, 13, 47, 107, 257, 397, 653, 881, 1279, 1889, 2293, 3119, 3847, 4423, 5323, 6563, 7937, 8819, 10391, 11833, 12889, 14831, 16477, 18713, 21599, 23603, 25189, 27409, 29063, 31511, 37159, 39869, 43321, 45589, 50923, 53281, 57271, 61561, 65173, 69821, 74383
Offset: 1

Views

Author

Omar E. Pol, Oct 20 2013

Keywords

Examples

			For n = 2, prime(2*prime(2)) = prime(2*3) = prime(6) = 13, so a(2) = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[n*Prime[n]], {n, 100}] (* T. D. Noe, Oct 22 2013 *)
  • PARI
    a(n) = prime(n*prime(n)); \\ Michel Marcus, Oct 22 2013

Formula

a(n) = A000040(A033286(n)).

A230329 Prime(prime(2*n)) - 2*prime(n).

Original entry on oeis.org

1, 11, 31, 53, 87, 131, 157, 203, 237, 295, 339, 387, 465, 501, 523, 633, 679, 755, 833, 889, 941, 1013, 1051, 1231, 1253, 1297, 1391, 1455, 1523, 1597, 1659, 1801, 1825, 1991, 2053, 2115, 2235, 2321, 2385, 2457, 2551, 2657, 2727, 2843, 2905
Offset: 1

Views

Author

Gerasimov Sergey, Oct 16 2013

Keywords

Comments

For n = 12239, 24046, 24140, 24255, ... a(n+1) = a(n), and for n = 2154, 2524, 2810, 3795, ... a(n+1) < a(n). What is the smallest number n such that a(n+2) <= a(n+1) <= a(n)? - Farideh Firoozbakht, Oct 18 2013
Using the Prime Number Theorem, prime(n) ~ n log n, the asymptotic behavior is the same as that of A217622, a(n) ~ 2n (log 2n) log(2n log 2n). - M. F. Hasler, Oct 19 2013

Crossrefs

Programs

  • Mathematica
    Table[Prime[Prime[2n]] - 2Prime[n], {n, 45}]
  • PARI
    A230329(n)=prime(prime(2*n))-2*prime(n) \\ M. F. Hasler, Oct 19 2013

Formula

a(n) = A217622(n) - 2*A000040(n).
a(n) = A217622(n) - A100484(n). - Omar E. Pol, Oct 19 2013

Extensions

Corrected by R. J. Mathar, Oct 18 2013
Showing 1-5 of 5 results.