cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217654 Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 13, 2, 0, 1, 202, 13, 2, 0, 1, 9390, 202, 13, 2, 0, 1, 1531336, 9390, 202, 13, 2, 0, 1, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 13026163465206704, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 09 2012

Keywords

Comments

Row sums give A000273.
Column k = 0 is A053598.

Examples

			Triangle T(n,k) begins:
        1;
        0,    1;
        2,    0,   1;
       13,    2,   0,  1;
      202,   13,   2,  0, 1;
     9390,  202,  13,  2, 0, 1;
  1531336, 9390, 202, 13, 2, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    g:= proc(n) option remember; b(n$2, []) end:
    T:= (n, k)-> g(n-k)-`if`(kAlois P. Heinz, Sep 04 2019
  • Mathematica
    Needs["Combinatorica`"]; f[list_]:=Insert[Select[list,#>0&],0,-2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n,0,nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x,0,nn}], {x,y}]]], 1]
    (* Second program: *)
    b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]];
    g[n_] := g[n] = b[n, n, {}];
    T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

Formula

O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.