A217654 Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.
1, 0, 1, 2, 0, 1, 13, 2, 0, 1, 202, 13, 2, 0, 1, 9390, 202, 13, 2, 0, 1, 1531336, 9390, 202, 13, 2, 0, 1, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 13026163465206704, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 2, 0, 1; 13, 2, 0, 1; 202, 13, 2, 0, 1; 9390, 202, 13, 2, 0, 1; 1531336, 9390, 202, 13, 2, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..43, flattened
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add( igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])), add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)) end: g:= proc(n) option remember; b(n$2, []) end: T:= (n, k)-> g(n-k)-`if`(k
Alois P. Heinz, Sep 04 2019 -
Mathematica
Needs["Combinatorica`"]; f[list_]:=Insert[Select[list,#>0&],0,-2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n,0,nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x,0,nn}], {x,y}]]], 1] (* Second program: *) b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]]; g[n_] := g[n] = b[n, n, {}]; T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
Formula
O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.
Comments