cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217657 Delete the initial digit in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 10 2012

Keywords

Comments

When n - a(n)*10^[log_10 n] >= 10^[(log_10 n) - 1], where [] denotes floor, or when n < 100 and 10|n, n is the concatenation of A000030(n) and a(n) - corrected by Glen Whitney, Jul 01 2022
a(110) = 10 is the first term > 9. The sequence consists of 10 repetitions of 0 (n = 0..9), then 9 repetitions of {0, ..., 9} (n = 10..99), then 9 repetitions of {0, ..., 99} (n = 100..999), and so on. - M. F. Hasler, Oct 18 2017

Crossrefs

Cf. A059995 (drop final digit of n), A000030 (initial digit of n), A202262.

Programs

  • Haskell
    a217657 n | n <= 9    = 0
              | otherwise = 10 * a217657 n' + m where (n', m) = divMod n 10
    
  • Mathematica
    Array[FromDigits@ Rest@ IntegerDigits@ # &, 121, 0] (* Michael De Vlieger, Dec 22 2019 *)
  • PARI
    apply( A217657(n)=n%10^logint(n+!n,10), [0..199]) \\ M. F. Hasler, Oct 18 2017, edited Dec 22 2019
    
  • Python
    def a(n): return 0 if n < 10 else int(str(n)[1:])
    print([a(n) for n in range(121)]) # Michael S. Branicky, Jul 01 2022

Formula

a(n) = 0 if n <= 9, otherwise 10*a(floor(n/10)) + n mod 10.
a(n) = n mod 10^floor(log_10(n)), a(0) = 0. - M. F. Hasler, Oct 18 2017

Extensions

Data extended to include the first terms larger than 9, by M. F. Hasler, Dec 22 2019