cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A292683 Numbers divisible by themselves with first digit removed (A217657), excluding multiples of 10.

Original entry on oeis.org

11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48, 51, 52, 55, 61, 62, 63, 64, 65, 66, 71, 72, 75, 77, 81, 82, 84, 85, 88, 91, 92, 93, 95, 96, 99, 101, 102, 104, 105, 125, 201, 202, 204, 205, 208, 225, 301, 302, 303, 304, 305, 306, 312, 315, 325, 375, 401, 402, 404, 405, 408, 416, 425, 501
Offset: 1

Views

Author

M. F. Hasler, Oct 17 2017

Keywords

Comments

Obviously, any term multiplied by 10 would again be a term, so we exclude trailing zeros.
This sequence cannot contain single-digit numbers (which would yield 0 with the initial digit removed), in contrast to A178158 (numbers divisible by every suffix of n) where the condition is vacuously satisfied for single-digit numbers.
416 is the first term in the present sequence which is not in A178158.
See A292684 and A292685 for the (number of) multiples of N = a(n) which have the same property and yield the same ratio N/A217657(N).

Examples

			12 is in the sequence because it is divisible by 2.
416 is in the sequence because it is divisible by 16, 416 = 4*4*25 + 16.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[n, 10] > 0 && Mod[n, n - Quotient[n, 10^Floor@ Log10@ n] 10^Floor@ Log10@ n] == 0; Select[ Range[11, 501], fQ] (* Robert G. Wilson v, Oct 18 2017 *)
    Select[Range[10,550],Mod[#,10]!=0&&Mod[#,FromDigits[Rest[IntegerDigits[#]]]]==0&] (* Harvey P. Dale, Sep 15 2024 *)
  • PARI
    select( is(n)=n%10&&(m=n%10^logint(n,10))&&!(n%m), [0..500])

A292684 a(n) is the number of positive integers k not divisible by 10 such that f(kN) = f(N) for N = A292683(n) and f(x) = x / (x without its first digit: A217657(x)).

Original entry on oeis.org

9, 4, 1, 9, 9, 4, 3, 3, 3, 3, 1, 1, 9, 9, 9, 7, 4, 9, 9, 9, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 3, 9, 9, 9, 9, 9, 7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

M. F. Hasler, Oct 17 2017

Keywords

Comments

Sequence A292683 lists the numbers n which are divisible by A217657(n), i.e., by n with its first digit removed.
We exclude k with trailing 0's (just like in A292683) because if k*N has the property, then 10*k*N trivially also has the property.
Is there any number for which there are more than 9 possible k-values?
All of the k-values are listed in the table A292685.

Examples

			For A292683(1) = 11, we have k = 1, ..., 9 satisfying 11*k / A217657(11*k) = 11.
For A292683(2) = 12, we have k = 1, 2, 3, 4 satisfying 12*k / A217657(12*k) = 6.
For A292683(3) = 15, we have only k = 1 satisfying 15*k / A217657(15*k) = 3.
For A292683(4) = 21, we have k = 1, 2, 3, 4, 5, 15, 25, 35 and 45 satisfying 21*k / A217657(21*k) = 2.
		

Crossrefs

Programs

  • PARI
    (A217657(n)=n%10^logint(n,10)); A292684(n,N=A292683(n),r=N/A217657(N),a=[1])={for(k=2,oo,k%10||next;k>10*a[#a]&&break;A217657(k*N)*r==k*N&&a=concat(a,k));#a} \\ Instead of the 1st arg. n, one can directly give N (= A292683(n) by default) as 2nd arg. One could store only the last 'a' (and increase a counter) instead of storing all 'a's.

A292685 Irregular table where row n lists the positive integers k not divisible by 10 such that f(kN) = f(N) for N = A292683(n) and f(x) = x / (x without its first digit: A217657(x)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 1, 1, 2, 3, 4, 5, 15, 25, 35, 45, 1, 2, 3, 4, 5, 15, 25, 35, 45, 1, 2, 5, 15, 1, 5, 15, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 1, 2, 5, 15, 25, 75, 125, 175, 225, 1, 2, 5, 15, 25, 75, 125, 175, 225, 1, 2, 5, 15, 25, 75, 125, 175, 225
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

The numbers N listed in A292683 are such that N is divisible by A217657(N) = N with its initial digit removed. Most of these numbers have several multiples k*N which again have this property, but furthermore, such that the ratio k*N / A217657(k*N) is always the same. The corresponding k-values are listed here.
It is not rare that there are 9 such k-values, although the set of these is usually different from { 1, ..., 9 }. Is there any N for which there more than 10 such k-values?

Examples

			The table starts as follows:
    n | N=A292683(n) | N/A217657(N) | A292685(n,k=1..A292684(n))
    1 |      11      |      11      | 1, 2, 3, 4, 5, 6, 7, 8, 9
    2 |      12      |       6      | 1, 2, 3, 4
    3 |      15      |       3      | 1
    4 |      21      |      21      | 1, 2, 3, 4, 5, 15, 25, 35, 45
    5 |      24      |       6      | 1, 2, 5, 15
      |    (...)     |    (...)     | (...)
   68 |     416      |      26      | 1, 2, 5, 15, 25, 75, 125, 175, 225
           (...)
For A292683(2) = 12, we have k = 1, 2, 3, 4 satisfying 12*k / A217657(12*k) = 6, e.g., 12*4 = 48, 48 / 8 = 6 (= 12 / 2).
There are other k such that 12*k is divisible by A217657(12*k), e.g., k = 6, 7, 8, 17, ... (=> 12*k = 72, 84, 96, 204: all divisible by their last digit), but which yield ratios (here 36, 21, 16, 51) different from 6.
For n = 4, we have, e.g., 21*15 = 315, 315 / 15 = 21 (= 21 / 1), or 21*45 = 945, 945 / 45 = 21. Here too, e.g., 21*24 = 504 is divisible by 04, but 504 / 4 = 126, not 21.
		

Crossrefs

Cf. A292683, A292684 (gives the row lengths), A217657, A000030.

Programs

  • PARI
    A292685_row(n, N=A292683(n), r=N/A217657(N), a=[1])={for(k=2, oo, if(k%10,A217657(k*N)*r==k*N&&a=concat(a,k), k<10*a[#a]||break)); a} \\ Instead of the 1st arg. n, one can directly give N (= A292683(n) by default) as 2nd arg. It is not checked whether N is in A292683 (else the resulting vector should be empty).

A000030 Initial digit of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

When n - a(n)*10^[log_10 n] >= 10^[(log_10 n) - 1], where [] denotes floor, or when n < 100 and 10|n, n is the concatenation of a(n) and A217657(n). - Reinhard Zumkeller, Oct 10 2012, improved by M. F. Hasler, Nov 17 2018, and corrected by Glen Whitney, Jul 01 2022
Equivalent definition: The initial a(0) = 0 is followed by each digit in S = {1,...,9} once. Thereafter, repeat 10 times each digit in S. Then, repeat 100 times each digit in S, etc.

Examples

			23 begins with a 2, so a(23) = 2.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000030 = until (< 10) (`div` 10) -- Reinhard Zumkeller, Feb 20 2012, Feb 11 2011
    
  • Magma
    [Intseq(n)[#Intseq(n)]: n in [1..100]]; // Vincenzo Librandi, Nov 17 2018
    
  • Maple
    A000030 := proc(n)
        if n = 0 then
            0;
        else
            convert(n,base,10) ;
            %[-1] ;
        end if;
    end proc:
    seq(A000030(n),n=0..200) ;# N. J. A. Sloane, Feb 10 2017
  • Mathematica
    Join[{0},First[IntegerDigits[#]]&/@Range[90]] (* Harvey P. Dale, Mar 01 2011 *)
    Table[Floor[n/10^(Floor[Log10[n]])], {n, 1, 50}] (* G. C. Greubel, May 16 2017 *)
    Table[NumberDigit[n,IntegerLength[n]-1],{n,0,100}] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    a(n)=if(n<10,n,a(n\10)) \\ Mainly for illustration.
    
  • PARI
    A000030(n)=n\10^logint(n+!n,10) \\ Twice as fast as a(n)=digits(n)[1]. Before digits() was added in PARI v.2.6.0 (2013), one could use, e.g., Vecsmall(Str(n))[1]-48. - M. F. Hasler, Nov 17 2018
    
  • Python
    def a(n): return int(str(n)[0])
    print([a(n) for n in range(85)]) # Michael S. Branicky, Jul 01 2022

Formula

a(n) = [n / 10^([log_10(n)])] where [] denotes floor and log_10(n) is the logarithm is base 10. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = k for k*10^j <= n < (k+1)*10^j for some j. - M. F. Hasler, Mar 23 2015

A040997 Absolute value of first digit of n minus sum of other digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Offset: 1

Views

Author

Keywords

Comments

This is different from |A055017(n)| = |(x1 + x3 + ...) - (x2 + x4 + ...)|, where x1,...,xk are the digits of n. - M. F. Hasler, Nov 09 2019

Examples

			a(371) = |3-7-1| = 5.
		

Crossrefs

Programs

  • Haskell
    a040997 n = abs $ a000030 n - a007953 (a217657 n) -- Reinhard Zumkeller, Oct 10 2012
    
  • PARI
    apply( A040997(n)={abs(vecsum(n=digits(n))-n[1]*2)}, [1..199]) \\ M. F. Hasler, Nov 09 2019

Formula

If decimal expansion of n is x1 x2 ... xk then a(n) = |x1-x2-x3- ... -xk|.
a(n) = abs(A000030(n) - A007953(A217657(n))). - Reinhard Zumkeller, Oct 10 2012

Extensions

Name edited and incorrect formula deleted by M. F. Hasler, Nov 09 2019

A226099 Positive integers that yield a prime when their most significant (i.e., leftmost) decimal digit is removed.

Original entry on oeis.org

12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 111, 113, 117, 119, 123, 129, 131, 137, 141, 143, 147, 153, 159, 161, 167, 171, 173, 179, 183, 189, 197, 202, 203, 205, 207, 211, 213, 217
Offset: 1

Views

Author

Jonathan Vos Post, May 26 2013

Keywords

Comments

Terms < 110 are the same as in A260181, numbers whose last digit is prime. - M. F. Hasler, Dec 20 2019
These are numbers with decimal expansion of the form k = xp where p is a prime and x is a single digit. Whether or not the number k itself is a prime is irrelevant. - N. J. A. Sloane, Dec 21 2019

Examples

			a(1) = 12 because when its most significant (or leftmost) digit (1) is removed, the remaining number 2 is prime, and it is the least such number.
102, 103, 105 and 107 are in the sequence because if the first digit is dropped, what is left is a 1-digit prime with a leading digit '0'.
		

Crossrefs

Cf. A000040, A217657 (n without initial digit), A000030 (initial digit of n), A260181 (last digit is prime), A202262 (substrings are composite).

Programs

  • Magma
    [k:k in [1..220]| IsPrime( k-Reverse(Intseq(k))[1]*10^(#Intseq(k)-1 ))]; // Marius A. Burtea, Dec 21 2019
  • Mathematica
    Select[Range@ 300, PrimeQ@ FromDigits@ Rest@ IntegerDigits@ # &] (* Giovanni Resta, Dec 20 2019 *)
  • PARI
    select( is(n)=isprime(n%10^logint(n+!n,10)), [0..222]) \\ M. F. Hasler, Dec 20 2019
    

Formula

From M. F. Hasler, Dec 21 2019: (Start)
n in A226099 (this sequence) <=> A217657(n) in A000040 (prime).
a(n) = a(n-4) + 10 for 4 < n < 41, i.e., 20 < a(n) < 110; a(n) = a(n-25) for 61 < n < 287, i.e., 200 < a(n) < 1100, etc. (End)

A344748 Numbers m with decimal expansion (d_k, ..., d_1) such that d_i = m * i mod 10 for i = 1..k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 26, 42, 47, 63, 68, 84, 89, 147, 284, 321, 468, 505, 642, 789, 826, 963, 2468, 2963, 4321, 4826, 6284, 6789, 8147, 8642, 50505, 52963, 54321, 56789, 58147, 208642, 258147, 406284, 456789, 604826, 654321, 802468, 852963
Offset: 1

Views

Author

Rémy Sigrist, May 28 2021

Keywords

Comments

Positive terms have no trailing zero in decimal representation (A067251), and are uniquely determined by their final digit d (A010879) and the number of digits, say k, in their decimal expansion (A055642); d*k cannot be a multiple of 10.
If m belongs to the sequence, then A217657(m) also belongs to the sequence.

Examples

			- 6 * 1 = 6 mod 10,
- 6 * 2 = 2 mod 10,
- 6 * 3 = 8 mod 10,
- 6 * 4 = 4 mod 10,
- so 4826 belongs to the sequence.
		

Crossrefs

Programs

  • PARI
    is(n) = { my (r=n); for (k=1, oo, if (r==0, return (1), (n*k)%10!=r%10, return (0), r\=10)) }
    
  • PARI
    print (setbinop((d,k) -> sum(i=1, k, 10^(i-1) * ((d*i)%10)), [1..9], [0..6]))
    
  • Python
    def ok(m):
      d = str(m)
      return all(d[-i] == str((m*i)%10) for i in range(1, len(d)+1))
    print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
    
  • Python
    def auptod(maxdigits):
      alst = [0]
      for k in range(1, maxdigits+1):
        aklst = []
        for d1 in range(1, 10):
          d = [(d1*i)%10 for i in range(k, 0, -1)]
          if d[0] != 0: aklst.append(int("".join(map(str, d))))
        alst.extend(sorted(aklst))
      return alst
    print(auptod(6)) # Michael S. Branicky, May 29 2021

A344749 Numbers m with decimal expansion (d_k, ..., d_1) such that d_i = m ^ i mod 10 for i = 1..k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 19, 42, 48, 55, 64, 66, 93, 97, 111, 248, 397, 464, 555, 666, 793, 842, 919, 1111, 1397, 1793, 1919, 5555, 6248, 6464, 6666, 6842, 11111, 26842, 31793, 46464, 55555, 66666, 71397, 86248, 91919, 111111, 191919, 426842, 486248
Offset: 1

Views

Author

Rémy Sigrist, May 28 2021

Keywords

Comments

Positive terms are zeroless (A052382) and uniquely determined by their final digit (A010879) and the number of digits in their decimal expansion (A055642).
If m belongs to the sequence, then A217657(m) also belongs to the sequence.

Examples

			- 7^1 = 7 mod 10,
- 7^2 = 9 mod 10,
- 7^3 = 3 mod 10,
- 7^4 = 1 mod 10,
- so 1397 belongs to the sequence.
		

Crossrefs

Programs

  • PARI
    is(n) = { my (r=n); for (k=1, oo, if (r==0, return (1), (n^k)%10!=r%10, return (0), r\=10)) }
    
  • PARI
    print (setbinop((d,k) -> sum(i=1, k, 10^(i-1) * ((d^i)%10)), [1..9], [0..7])[1..50])
    
  • Python
    def ok(m):
      d = str(m)
      return all(d[-i] == str((m**i)%10) for i in range(1, len(d)+1))
    print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
    
  • Python
    def auptod(maxdigits):
      alst = [0]
      for k in range(1, maxdigits+1):
        aklst = []
        for d1 in range(1, 10):
          d = [(d1**i)%10 for i in range(k, 0, -1)]
          aklst.append(int("".join(map(str, d))))
        alst.extend(sorted(aklst))
      return alst
    print(auptod(6)) # Michael S. Branicky, May 29 2021

A366198 Any a(n) replacing the first digit of a(n+1) forms a palindrome. This is the lexicographically earliest sequence of distinct nonnegative integers with this property.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 21, 12, 31, 13, 41, 14, 51, 15, 61, 16, 71, 17, 81, 18, 91, 29, 22, 32, 23, 42, 24, 52, 25, 62, 26, 72, 27, 82, 28, 92, 39, 33, 43, 34, 53, 35, 63, 36, 73, 37, 83, 38, 93, 49, 44, 54, 45, 64, 46, 74, 47, 84, 48, 94, 59, 55, 65, 56, 75, 57, 85, 58, 95
Offset: 1

Views

Author

Eric Angelini, Oct 03 2023

Keywords

Comments

No integer > 1 ending in zero will appear in the sequence.
For n >= 10 the concatenation of a(n) and A217657(a(n+1)) is a palindrome.

Examples

			a(9)  =  8 replacing the first digit of a(10) =  9 forms   8, a palindrome;
a(10) =  9 replacing the first digit of a(11) = 19 forms  99, a palindrome;
a(11) = 19 replacing the first digit of a(12) = 11 forms 191, a palindrome;
a(12) = 11 replacing the first digit of a(13) = 21 forms 111, a palindrome;
a(13) = 21 replacing the first digit of a(14) = 12 forms 212, a palindrome; etc.
		

Crossrefs

Programs

  • Mathematica
    terms=75; b[0]=0;
    b[n_]:=b[n]=(k=1; While[MemberQ[Array[b,n-1],k]||!PalindromeQ[FromDigits@Flatten@ReplacePart[IntegerDigits@k,1-> IntegerDigits@b[n-1]]],k++]; k); t=0;While[Length[a=Join[Range[0,9],Flatten@Table[FromDigits@Flatten@Insert[#,Table[9,i],-2]&/@(IntegerDigits/@Array[b,9^2,10]),{i,0,t++}]]]Giorgos Kalogeropoulos, Oct 04 2023 *)
  • Python
    from itertools import count, islice
    def ispal(n): return (s:=str(n))==s[::-1]
    def agen(): # generator of terms
        an, seen = 0, set()
        while True:
            yield an; seen.add(an); s = str(an)
            an = next(k for k in count(0) if k not in seen and ispal(s+str(k)[1:]))
    print(list(islice(agen(), 80))) # Michael S. Branicky, Oct 04 2023
    
  • Python
    # faster version suitable for generating b-file
    from sympy import isprime
    from itertools import count, islice, product
    def pals(digs):
        yield from digs
        for d in count(2):
            for p in product(digs, repeat=d//2):
                left = "".join(p)
                for mid in [[""], digs][d%2]:
                    yield left + mid + left[::-1]
    def folds(s): # generator of suffixes of palindromes starting with s
        for i in range((len(s)+1)//2, len(s)+1):
            for mid in [True, False]:
                t = s[:i] + (s[:i-1][::-1] if mid else s[:i][::-1])
                if t.startswith(s):
                    yield t[len(s):]
        yield from ("".join(p)+s[::-1] for p in pals("0123456789"))
    def agen():
        s, seen = "0", {"0"}
        while True:
            yield int(s)
            found = False
            for end in folds(s):
                for start in "123456789":
                    t = start + end
                    if t not in seen:
                        found = True; break
                if found: break
            s, seen = t, seen | {t}
    print(list(islice(agen(), 60))) # Michael S. Branicky, Oct 04 2023

Formula

For n >= 92, a(n) = 10*a(n-81) + 90 - 9*(a(n-81) mod 10). - David A. Corneth, Oct 04 2023

A274580 Digital difference of n: the most significant decimal digit of n minus the sum of the other digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Felix Fröhlich, Jun 29 2016

Keywords

Comments

If A007953(n) is seen as giving the resulting sum when inserting "+" signs between the digits of n, then a(n) gives the resulting difference when inserting "-" signs between the digits of n.
a(n) = 0 if and only if n is in A193772.
Signed version of A040997.
First differs from A225693 at n = 101.
abs(a(n)) first differs from abs(A055017(n)) at n = 102.

Examples

			a(13) = 1 - 3 = -2.
a(74) = 7 - 4 = 3.
a(211) = 2 - 1 - 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[Fold[#1 - #2 &, IntegerDigits@ n], {n, 76}] (* Michael De Vlieger, Jun 30 2016 *)
    Table[-Differences[(Total/@TakeDrop[IntegerDigits[n],1])],{n,100}]//Flatten (* Harvey P. Dale, Dec 27 2022 *)
  • PARI
    diffdigits(n) = my(d=digits(n), dd=d[1]); for(k=2, #d, dd=dd-d[k]); dd
    a(n) = diffdigits(n)

Formula

a(n) = A000030(n) - A007953(A217657(n)).
Showing 1-10 of 11 results. Next