A267939 Number x = concat(MSD(x),b), where MSD = A000030 stands for Most Significant Digit, such that MSD(x)*b is equal to the reverse of x.
351, 621, 886, 920781, 3524751, 338752611, 35247524751, 920780120781, 920879219781, 3387524752611, 3526124738751, 338738752612611, 352475247524751, 33875247524752611, 35247387526124751, 35261247524738751, 920780120780120781, 920780219879120781, 920879120780219781, 920879219879219781
Offset: 1
Examples
3*51 = 153; 6*21 = 126; 3*524751 = 1574253.
Links
- Robert Israel, Table of n, a(n) for n = 1..415
Programs
-
Maple
T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a,b,n; for n from 1 to q do a:=n mod 10; b:=trunc(n/10^ilog10(n)); if (a=1 and b>1) or (a=6 and (b=2 or b=4 or b=6 or b=8)) or (b=5 and (a=3 or a=5 or a=7 or a=9)) then if T(n)=b*(n mod 10^ilog10(n)) then print(n); fi; fi; od; end: P(10^10); # alternative: N:= 20: # to get all terms with at most N digits. extend:= proc(d,psol,eqs) local peqs, cvars, bvars, ncs, res,T, cs, ceqs, sol, svals; peqs:= subs(psol, eqs); cvars,bvars:= selectremove(t -> op(0,t) = 'c',indets(peqs)); ncs:= nops(cvars); res:= NULL; if ncs >= 1 then T:= combinat:-cartprod([[$0..d-1]$ncs]); while not T[finished] do cs:= T[nextvalue](); cs:= seq(cvars[i]=cs[i],i=1..ncs); ceqs:= subs(cs,peqs); sol:= solve(ceqs,bvars); svals:= map(rhs,sol); if indets(svals) <> {} then error("Oops: %1",svals) fi; if svals::set(nonnegint) and max(svals) <= 9 then res:= res, [op(psol), cs, op(sol)]; fi od else sol:= solve(peqs,bvars); svals:= map(rhs,sol); if indets(svals) <> {} then error("Oops: %1",svals) fi; if svals::set(nonnegint) and max(svals) <= 9 then res:= [op(psol), op(sol)]; fi fi; [res] end proc: G:= proc(d,n) local eqs, i, rs, b0s; eqs:= [d*b[0] - d - 10*c[0], seq(d*b[i]+c[i-1] - b[n-i] - 10*c[i], i=1..n-2), d*b[n-1] + c[n-2] - b[1] - 10*b[0]]; b0s:= [msolve(eqs[1] mod 10,10)]; rs:= select(t -> (map(rhs,t))::set(nonnegint), map(t -> t union solve(eval(eqs[1],t),{c[0]}),b0s)); for i from 1 to floor(n/2) do rs:= map(s -> op(extend(d,s,{eqs[i+1],eqs[-i]})), rs); od; sort(map(s -> d*10^n + subs(s, add(10^i*b[i],i=0..n-1)), rs)); end proc: A:= NULL; for n from 2 to N-1 do for d from 3 to 9 do res:= G(d,n); if res <> [] then A:= A, op(res); fi od od: A; # Robert Israel, Feb 01 2016
-
Mathematica
Select[Range@ 4000000, First[#] FromDigits@ Rest@ # == FromDigits@ Reverse@ # &@ IntegerDigits@ # &] (* Michael De Vlieger, Jan 29 2016 *)
Extensions
a(7) to a(20) from Robert Israel, Feb 01 2016
Comments